

Curriculum & Syllabi

Regulation 2024

M.E. Computer Science & Engineering

.

ARUNAI ENGINEERING COLLEGE

(AUTONOMOUS) TIRUVANNAMALAI REGULATIONS 2024 CHOICE BASED CREDIT SYSTEM

M.E. COMPUTER SECIENCE AND ENGINEERING

CURRICULUM AND SYLLABI FOR I TO IV SEMESTERS

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):

- I. Develop proficiency as a computer science engineer with an ability to solve a wide range of computational problems and have sustainable development in industry or any other work environment.
- II. Analyze and adapt quickly to new environments and technologies, gather new information, and work on emerging technologies to solve multidisciplinary engineering problems.
- III. Possess the ability to think analytically and logically to understand technical problems with computational systems for a lifelong learning which leads to pursuing research.
- IV. Adopt ethical practices to collaborate with team members and team leaders to build technology with cutting-edge technical solutions for computing systems
- V. Strongly focus on design thinking and critical analysis to create innovative products and become entrepreneurs.

PROGRAM OUTCOMES (POs):

- 1. An ability to independently carry out research / investigation and development work to solve practical problems.
- 2. An ability to write and present a substantial technical report/document.
- 3. Students should be able to demonstrate a degree of mastery over the area of Computer Science and Engineering.
- 4. Efficiently design, build and develop system application software for distributed and centralized computing environments in varying domains and platforms.
- 5. Understand the working of current Industry trends, the new hardware architectures, the software components and design solutions for real world problems by Communicating and effectively working with professionals in various engineering fields and pursue research orientation for a lifelong professional development in computer and automation arenas.
- 6. Model a computer based automation system and design algorithms that explore the understanding of the tradeoffs involved in digital transformation.

HoD / BOS chairman

PEO/PO Mapping:

DEO			PC	O's		
PEO	PO1	PO2	PO3	PO4	PO5	PO6
I	1	2	3	3	35	3
II	3	2	3	3	3	3
III	3	3	3	3	2	3
IV	3	3	2	3	3	2
V	1	2	3	2	2	2

HoD / Bos chairman

MAPPING OF COURSE OUTCOMES AND PROGRAMME OUTCOMES

SEM	YEAR	SUBJECT CODE	COURSE NAME	PO1	PO2	PO3	PO4	PO5	PO6
		MA24104	Applied Probability and Statistics for Computer Science Engineers	2	1.67	2	2	2	2
		RM24101	Research Methodology and IPR	3	2	2	1.67	1.20	2
		CP24101	Advanced Data Structures and Algorithms	3	2	1.25	1.67	1.67	2
		CP24102	Database Practices	2.40	2	1.50	1.60	1	1.20
		CP24103	Network Technologies	1	2.80	2.20	1.75	1.50	1.50
		CP24104	Principles of Programming Languages	1	1.67	1	1	1.50	2
_	I		Audit Course I*	-	-	-	-	-	-
I	1	CP24111	Advanced Data Structures and Algorithms Laboratory	1	1.50	1.75	1.40	2	1
		CP24201	Internet of Things	1.60	1.80	1.60	1.40	2	2.20
		CP24202	Multicore Architecture and Programming	1.80	1	1.50	1.25	1.60	2.20
		CP24203	Machine Learning	1.80	2.20	1.25	1.75	1	2.20
		SE24201	Advanced Software Engineering	2	2.75	2	2.4	2.67	2
			Audit Course II*	-	-	-	-	-	
	I	CP24211	Term Paper Writing and seminar Laboratory	-	1	· -	-	5	-
	-	CP24212	Software Engineering Laboratory	2.5	2.5	2.25	2.5	2	2.34
		CP24301	Security Practices	1.50	1.67	1.60	1.60	1.80	2.40
III	II	CP24311	Project Work I	3	3	3	3	3	3
IV	II	CP24411	Project Work II	3	3	3	3	3	3

HoD Bos chairman

ARUNAI ENGINEERING COLLEGE

(AUTONOMOUS) TIRUVANNAMALAI REGULATIONS 2024 CHOICE BASED CREDIT SYSTEM

M.E. COMPUTER SECIENCE AND ENGINEERING

CURRICULUM AND SYLLABI FOR I TO IV SEMESTERS

SEMESTER I

S. NO	COURSE CODE	COURE TITLE	CATE GORY		IODS WEEI		CONTACT	CREDITS
			John	L	T	P	PERIODS	
THE	ORY							
1	MA24104	Applied Probability and Statistics for Computer Science Engineers	FC	3	1	0	4	4
2	RM24101	Research Methodology and IPR	RMC	2	0	0	2	2
3	CP24101	Advanced Data Structures and Algorithms	PCC	3	0	0	3	3
4	CP24102	Database Practices	PCC	3	0	2	5	4
5	CP24103	Network Technologies	PCC	3	0	0	3	3
6	CP24104	Principles of Programming Languages	PCC	3	0	0	3	3
7		Audit Course I*	AC	2	0	0	2	0
PRAC	CTICALS							
8	CP24111	Advanced Data Structures and Algorithms Laboratory	PCC	0	0	4	4	2
		···	TOTAL	19	1	6	26	21

^{*} Audit Course is optional

SEMESTER II

S. NO	COURSE CODE	COURE TITLE	CATE	1	IODS WEEI	PER K	TOTAL CONTACT	CREDITS
110	CODE		GOKI	L	T	P	PERIODS	
THE	ORY							
1	CP24201	Internet of Things	PCC	3	0	2	5	4
2	CP24202	Multicore Architecture and Programming	PCC	3	0	2	5	4
3	CP24203	Machine Learning	PCC	3	0	2	5	4
4	SE24201	Advanced Software Engineering	PCC	3	0	0	3	3
5		Professional Elective - I	PEC	3	0	0	3	3
6		Professional Elective - II	PEC	3	0	0	3	3

HoD / Bos chairman

7		Audit Course II*	AC	2	0	0	2	0
PRAC	CTICALS							
8	CP24211	Term Paper Writing and seminar Laboratory	EEC	0	0	2	2	1
9	CP24212	Software Engineering Laboratory	PCC	0	0	2	2	1
		- N	TOTAL	20	0	10	30	23

^{*} Audit Course is optional

SEMESTER III

S. NO	COURSE CODE	COURE TITLE	CATE GORY		PERIODS PER WEEK L T P		TOTAL CONTACT PERIODS	CREDITS
THE	ORY							
1	CP24301	Security Practices	PCC	3	0	0	3	3
2		Professional Elective III	PEC	3	0	0	3	3
3		Professional Elective IV	PEC	3	0	2	5	4
4		Open Elective	OEC	3	0	0	3	3
PRA	CTICALS							
5	CP24311	Project Work I	EEC	0	0	12	12	6
		·	TOTAL	12	0	14	26	19

SEMESTER IV

S. NO	COURSE	COURE TITLE	CATE	l	PERIODS PE WEEK		CONTACT	CREDITS
	CTICALS	·	GORY		T	P	PERIODS	
FRA	TICALS							
1	CP24411	Project Work II	EEC	0	0	24	24	12
		ih e	TOTAL	0	0	24	24	12

TOTAL NO. OF CREDITS: 75

HoD BOS chairman

SUMMARY

W	NAME OF THE PROGRAM	име: м	E COMP	UTER SC	ZIENCE A	ND ENGINEERING
S. NO		CRE	DITS PE	R SEMES	TER	CREDITS TOTAL
NU	SUBJECT AREA	I	II	Ш	IV	CREDITS TOTAL
1.	FC	04	00	00	00	04
2.	PCC	15	16	03	00	34
3.	PEC	00	06	07	00	13
4.	RMC	02	00	00	00	02
5.	OEC	00	00	03	00	03
6.	EEC	00	01	06	12	19
7.	Non Credit /Audit Course	00	00	00	00	00
Til	TOTAL CREDIT	21	23	19	12	75

PROFESSIONAL ELECTIVES SEMESTER II, ELECTIVE I

	COMPOR	SEIVILOILEI	CATE	PER	ODS	PER	TOTAL	
S.	COURSE	COURE TITLE	GORY	\ \	VEEL		CONTACT	CREDITS
NO	CODE		GOKI	L	T	P	PERIODS	
1	MP24001	Human Computer Interaction	PEC	3	0	0	3	3
2	MP24002	Cloud Computing Technologies	PEC	3	0	0	3	3
3	BD24001	Foundations of Data Science	PEC	3	0	0	3	3
4	MP24003	Wireless Communications	PEC	3	0	0	3	3
5	SE24001	Agile Methodologies	PEC	3	0	0	3	3
	CP24001	Performance Analysis of Computer	PEC	3	0	0	3	3
6	CP24001	Systems	TEC	3	0	U		
7	CP24002	Advanced Operating System	PEC	3	0	0	3	3
8	MU24001	Digital Image Processing	PEC	3	0	0	3	3

PROFESSIONAL ELECTIVES SEMESTER II, ELECTIVE II

S.	COURSE	COURE TITLE	CATE GORY	PERI	IODS VEEI		TOTAL CONTACT	CREDITS
NO	CODE		GURI	L	T	P	PERIODS	
1	BD24002	High Performance Computing for Big Data	PEC	3	0	0	3	3
2	CP24003	Information Retrieval Techniques	PEC	3	0	0	3	3
3	CP24004	Software Quality Assurance	PEC	3	0	0	3	3
4	CP24005	Autonomous Systems	PEC	3	0	0	3	3
5	CP24006	Web Analytics	PEC	3	0	0	3	3
6	MP24004	Cognitive Computing	PEC	3	0	0	3	3
7	AP24001	Quantum Computing	PEC	3	0	0	3	3
8	BD24003	Big Data Mining and Analytics	PEC	3	0	0	3	3

HoD / BOS charring

PROFESSIONAL ELECTIVES SEMESTER III, ELECTIVE III

S.	COURSE	COURE TITLE	CATE	1	IODS VEEI	PER (TOTAL CONTACT	CREDITS
NO	CODE		GORY	L	T	P	PERIODS	
1	CP24007	Mobile and Pervasive Computing	PEC	3	0	0	3	3
2	MP24005	Web Services and API Design	PEC	3	0	0	3	3
3	CP24008	Data Visualization Techniques	PEC	3	0	0	3	3
4	IF24001	Compiler Optimization Techniques	PEC	3	0	0	3	3
5	CP24009	Formal Models of Software Systems	PEC	3	0	0	3	3
6	AP24002	Robotics	PEC	3	0	0	3	3
7	ML24001	Natural Language Processing	PEC	2	0	2	4	3
8	IF24002	GPU Computing	PEC	3	0	0	3	3

PROFESSIONAL ELECTIVES SEMESTER III, ELECTIVE IV

S.	COURSE	COURE TITLE	CATE GORY	PERI	ODS VEEI	11	TOTAL CONTACT	CREDITS
NO	CODE		GOKI	L	T	P	PERIODS	
1	IF24003	DevOps and Microservices	PEC	3	0	2	5	4
2	MP24006	Mobile Application Development	PEC	3	0	2	5	4
3	IF24004	Deep Learning	PEC	3	0	2	5	4
4	CP24010	Blockchain Technologies	PEC	3	0	2	5	4
5	SE24002	Embedded Software Development	PEC	3	0	2	5	4
6	IF24005	Full Stack Web Application Development	PEC	3	0	2	5	4
7	CP24011	Bioinformatics	PEC	3	0	2	5	4
8	MP24007	Cyber Physical Systems	PEC	3	0	2	5	-4
9	MU24002	Mixed Reality	PEC	3	0	2	5	4

AUDIT COURSES - I

Registration for any of these Courses is Optional to Students

S.	COURSE	COURE TITLE	PERIODS PER WEEK		CONTACT	CREDITS	
NO	CODE		L	T	P	PERIODS	
1	AX24001	English for Research Paper Writing	2	0	0	2	0
2	AX24002	Disaster Management	2	0	0	2	0
3	AX24003	Constitution of India	2	0	0	2	0
4	AX24004	நற்றமிழ் இலக்கியம்	2	0	0	2	0

HoD Bos chairman

LIST OF OPEN ELECTIVES FOR PG PROGRAMMES

S.	COURSE	LIST OF OPEN ELECTIVES FOR F	PERI	ODS	PER	TOTAL	CREDITS
NO	CODE	COURE TITLE	L	VEEK T	P	CONTACT PERIODS	CKEDIIS
1.	OME24001	Vibration and Noise Control Strategies	3	0	0	3	3
2.	OME24002	Energy Conservation and Management in Domestic Sectors	3	0	0	3	3
3.	OME24003	Additive Manufacturing	3	0	0	3	3
4.	OME24004	Electric Vehicle Technology	3	0	0	3	3
5.	OME24005	New Product Development	3	0	0	3	3
6.	OBA24001	Sustainable Management	3	0	0	3	3
7.	OBA24002	Micro and Small Business Management	3	0	0	3	3
8.	OBA24003	Intellectual Property Rights	3	0	0	3	3
9.	OBA24004	Ethical Management	3	0	0	3	3
10.	ET24003	IoT for Smart Systems	3	0	0	3	3
11.	ET24002	Machine Learning and Deep Learning	3	0	0	3	3
12.	PX24010	Renewable Energy Technology	3	0	0	3	3
13.	PS24003	Smart Grid	3	0	0	3	3
14.	DS24001	Big Data Analytics	3	0	0	3	3
15.	NC24001	Internet of Things and Cloud	3	0	0	3	3
16.	MX24001	Medical Robotics	3	0	0	3	3
17.	VE24001	Embedded Automation	3	0	0	3	3
18.	CX24001	Environmental Sustainability	3	0	0	3	3
19.	NT24001	Nanocomposite Materials	3	0	0	3	3
20.	BY24001	IPR, Biosafety and Entrepreneurship	3	0	0	3	3

HoD / BOS chairman

FOUNDATION COURSES (FC)

		I OUT DITTION OF STREET		/				
S.	COURSE	COURE TITLE	PER	IODS WEEI			SEMESTER	
NO	CODE		L	T	P			
1.		Applied Probability and Statistics for Computer Science Engineers	3	1	0	4	I	

PROFESSIONAL CORE COURSES (PCC)

S.	COURSE	OURSE COURT TITLE		ODS VEEF		CREDITS	SEMESTER	
NO	CODE		L	T	P			
1	CP24101	Advanced Data Structures and Algorithms	3	0	0	3	I	
2.	CP24102	Database Practices	3	0	2	4	I	
3.	CP24103	Network Technologies	3	0	0	3	I	
4.	CP24104	Principles of Programming	3	0	0	3	I	
5.	CP24111	Advanced Data Structures and Algorithms Laboratory	0	0	4	2	I	
6.	CP24201	Internet of Things	3	0	2	4	II	
7.	CP24202	Multicore Architecture and Programming	3	0	2	4	II	
8.	CP24203	Machine Learning	3	0	2	4	II	
9.	SE24201	Advanced Software Engineering	3	0	0	3	II	
10.	CP24212	Software Engineering Laboratory	0	0	2	1	II	
11.	CP24301	Security Practices	3	0	0	3	III	

RESEARCH METHODOLOGY AND IPR COURSES (RMC)

S.	COURSE	COURE TITLE	PER	IODS VEEI			SEMESTER
NO	CODE		L	Т	P		
1.	RM24101	Research Methodology and IPR	2	0	0	2	I

EMPLOYABILITY ENHANCEMENT COURSES (EEC)

S. NO	COURSE	COURE TITLE	PERI	IODS VEEK			SEMESTER
NO	CODE		L	T	P		
1.	CP24211	Technical Seminar	0	0	2	1	I
2.	CP24311	Project Work I	0	0	12	6	III
3.	CP24411	Project Work II	0	0	24	12	IV

HoD / BOS chairman

Subject Code	Subject Name	Category	L	Т	P	C
MA24104	APPLIED PROBABILITY AND STATISTICS FOR COMPUTER SCIENCE ENGINEERS	FC	3	1	0	4

Course Objectives:

- To encourage students to develop a working knowledge of the central ideas of Linear Algebra.
- To enable students to understand the concepts of Probability and Random Variables.
- To understand the basic probability concepts with respect to two dimensional random variables along with the relationship between the random variables and the significance of the central limit theorem.
- To apply the small / large sample tests through Tests of hypothesis.
- To enable the students to use the concepts of multivariate normal distribution and principal components analysis.

UNIT - I LINEAR ALGEBRA

12

Vector spaces – norms – Inner Products – Eigenvalues using QR transformations – QR factorization – generalized eigenvectors – Canonical forms – singular value decomposition and applications – pseudo inverse – least square approximations.

UNIT - II PROBABILITY AND RANDOM VARIABLES

12

Probability – Axioms of probability – Conditional probability – Baye's theorem – Random variables – Probability function – Moments – Moment generating functions and their properties – Binomial, Poisson Geometric, Uniform, Exponential, Gamma and Normal distributions – Function of a random variable.

UNIT – III TWO DIMENSIONAL RANDOM VARIABLES

12

Joint distributions – Marginal and conditional distributions – Functions of two-dimensional random variables – Regression curve – Correlation.

UNIT - IV TESTING OF HYPOTHESIS

12

Sampling distributions – Type I and Type II errors – Small and Large samples – Tests based on Normal, t, Chi square and F distributions for testing of mean, variance and proportions – Tests for independence of attributes and goodness of fit

UNIT – V MULTIVARIATE ANALYSIS

12

Random vectors and matrices – Mean vectors and covariance matrices – Multivariate normal density and its properties – Principal components – Population principal components – Principal components from standardized variables.

Total Contact Hours: 60

Course Outcomes:	Upon completion of the course students should be able to:
CO1:	Apply the concepts of Linear Algebra to solve practical problems.
CO2:	Use the ideas of probability and random variables in solving engineering problems
<u>.</u>	Apply some of the commonly encountered two dimensional random variables and be equipped for a possible extension to multivariate analysis
	Use statistical tests in testing hypotheses on data.
	Develop critical thinking based on empirical evidence and the scientific approach to knowledge development.

HoD / BOS chairman

Refe	rence Books/Other Materials/Web Resources:
1.	Dallas E Johnson, "Applied multivariate methods for data Analysis", Thomson and Duxbury press, Singapore, 1998.
2.	Richard A. Johnson and Dean W. Wichern, "Applied multivariate statistical Analysis", Pearson Education, Fifth Edition, 6th Edition, New Delhi, 2013.
3.	Bronson, R.,"Matrix Operation" Schaum's outline series, Tata McGraw Hill, New York, 2011.
4.	Oliver C. Ibe, "Fundamentals of Applied probability and Random Processes", Academic Press, Boston, 2014.
5.	Johnson R. A. and Gupta C.B., "Miller and Freund's Probability and Statistics for Engineers", Pearson India Education, Asia, 9th Edition, New Delhi, 2017.

		C	O-PO Mapping			
PO / CO	PO1	PO2	PO3	PO4	PO5	PO
CO1:	1	2	3	-	-	1
CO2:	3	-	2	2	_	3
CO3:	-	-	1	-	3	2
CO4:	2	1	3	2	2	2
CO5:	2	2	1	-	1	2
Average:	2	1.67	2	2	2	2

HoD BOS chairman

Subject Code	Subject Name	Category	L	Т	P	C
RM24101	RESEARCH METHODOLOGY AND IPR	RMC	2	0	0	2

UNIT -	- I R	ESEARCH DESIGN			6
Overvi	ew of res	search process and design, Use of Secondary and exploratory da	ta to answer th	e research	question,
Oualita	ative rese	earch, Observation studies, Experiments and Surveys.			
IINIT.	-II D	ATA COLLECTION AND SOURCES			6
Measu	rements,	Measurement Scales, Questionnaires and Instruments, Samplin	ng and method	s. Data - I	Preparing,
Explor	ing, exar	nining and displaying.			10
UNIT -	-III D.	ATA ANALYSIS AND REPORTING			6
Overvi	iew of N	fultivariate analysis, Hypotheses testing and Measures of Ass	sociation. Pres	enting Ins	sights and
finding	gs using v	written reports and oral presentation.			
UNIT	- IV IN	TELLECTUAL PROPERTY RIGHTS			6
Intelled	ctual Pro	operty - The concept of IPR. Evolution and development of o	concept of IPR	t, IPR der	velopment
process	s Trade	secrets, utility Models, IPR & Biodiversity, Role of WIPO and V	WTO in IPR es	stablishme	ents, Right
of Pro	nerty. Co	ommon rules of IPR practices, Types and Features of IPR Agr	reement, Trade	emark, Fu	nctions of
LINES	CO in IP	R maintenance.			
INIT	_ V P	ATENTS			6
Patents	s – ohier	tives and benefits of patent. Concept, features of patent, Inven	ntive step, Spe	cification	, Types of
natent	annlicati	ion, process E-filing, Examination of patent, Grant of patent, Ro	evocation, Equ	itable Ass	signments
Licens	es Licer	asing of related patents, patent agents, Registration of patent age	ents.		
Licens	ics, Licoi	ioning of foliated parents, parents agently	Total	Contact I	Hours: 30
-					
Refere	ences:				
1.	Educatio	Donald R, Schindler Pamela S and Sharma JK, "Business Resent, 11e (2012).			
2.	Press, 20	e J. Holland, "Intellectual property: Patents, Trademarks, Copyr. 007.			
3.	David H	unt, Long Nguyen, Matthew Rodgers, "Patent searching: tools	& techniques",	Wiley, 2	007.
		CT 1: Ot to be a sundant			

		C	O-PO Mapping			
PO / CO	PO1	PO2	PO3	PO4	PO5	PO
CO1:	3	2	2	3	2	3
CO2:	3	-	-	-	1	3
CO3:	3	-	_	1	1	2
CO4:	3	_	_	-	1	1
CO5:	3	-	-	1	1	1
Average:	3	2	2	1.67	1.2	2

Programme Intellectual Property Rights, Law and practice", September 2013.

The Institute of Company Secretaries of India, Statutory body under an Act of parliament, "Professional

HoD / BOS chairman

Subject Code	Subject Name	Category	L	Т	P	C
CP24101	ADVANCED DATA STRUCTURES AND ALGORITHMS	PCC	3	0	0	3

Course Objectives:

- To understand the usage of algorithms in computing
- To learn and use hierarchical data structures and its operations
- To learn the usage of graphs and its applications
- To select and design data structures and algorithms that is appropriate for problems
- To study about NP Completeness of problems.

UNIT - I ROLE OF ALGORITHMS IN COMPUTING & COMPLEXITY ANALYSIS

9

Algorithms – Algorithms as a Technology -Time and Space complexity of algorithms- Asymptotic analysis-Average and worst-case analysis-Asymptotic notation-Importance of efficient algorithms- Program performance measurement - Recurrences: The Substitution Method – The Recursion-Tree Method- Data structures and algorithms.

UNIT – II HIERARCHICAL DATA STRUCTURES

9

Binary Search Trees: Basics – Querying a Binary search tree – Insertion and Deletion- Red Black trees: Properties of Red-Black Trees – Rotations – Insertion – Deletion -B-Trees: Definition of B -trees – Basic operations on B-Trees – Deleting a key from a B-Tree- Heap – Heap Implementation – Disjoint Sets - Fibonacci Heaps: structure – Mergeable-heap operations- Decreasing a key and deleting a node-Bounding the maximum degree.

UNIT – III GRAPHS

9

Elementary Graph Algorithms: Representations of Graphs – Breadth-First Search – Depth-First Search – Topological Sort – Strongly Connected Components- Minimum Spanning Trees: Growing a Minimum Spanning Tree – Kruskal and Prim- Single-Source Shortest Paths: The Bellman-Ford algorithm – Single-Source Shortest paths in Directed Acyclic Graphs – Dijkstra's Algorithm; Dynamic Programming - All-Pairs Shortest Paths: Shortest Paths and Matrix Multiplication – The Floyd-Warshall Algorithm

UNIT – IV ALGORITHM DESIGN TECHNIQUES

9

Dynamic Programming: Matrix-Chain Multiplication – Elements of Dynamic Programming – Longest Common Subsequence- Greedy Algorithms: – Elements of the Greedy Strategy- An Activity-Selection Problem - Huffman Coding.

UNIT – V NP COMPLETE AND NP HARD

9

NP-Completeness: Polynomial Time – Polynomial-Time Verification – NP- Completeness and Reducibility NP-Completeness Proofs – NP-Complete Problems.

Total Contact Hours: 45

Suggested Activities:

- 1. Write an algorithm for Towers of Hanoi problem using recursion and analyze the complexity (No of disc-4)
- 2. Write any one real time application of hierarchical data structure
- 3. Write a program to implement Make_Set, Find_Set and Union functions for Disjoint Set Data Structure for a given undirected graph G(V,E) using the linked list representation with simple implementation of Union operation
- 4. Find the minimum cost to reach last cell of the matrix from its first cell
- 5. Discuss about any NP completeness problem

Course Outcomes: Upon completion of the course students should be able to:

CO1: Design data structures and algorithms to solve computing problems.

HoD Bos chairman

CO2: Choose and implement efficient data structures and apply them to solve problems.
CO3: Design algorithms using graph structure and various string-matching algorithms to solve
real-life problems.
CO4: Design one's own algorithm for an unknown problem.
CO5: Apply suitable design strategy for problem solving.

m c	
Refe	rences:
1.	S.Sridhar," Design and Analysis of Algorithms", Oxford University Press, 1st Edition, 2014.
2.	Adam Drozdex, "Data Structures and algorithms in C++", Cengage Learning, 4th Edition, 2013.
2	T.H. Cormen, C.E.Leiserson, R.L. Rivest and C.Stein, "Introduction to Algorithms", Prentice Hall of India,
3.	3rd Edition, 2012.
4.	Mark Allen Weiss, "Data Structures and Algorithms in C++", Pearson Education, 3rd Edition, 2009.
_	E. Horowitz, S. Sahni and S. Rajasekaran, "Fundamentals of Computer Algorithms", University Press, 2nd
5.	Edition, 2008.
	Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman, "Data Structures and Algorithms", Pearson Education,
6.	Reprint 2006.

		CO	O-PO Mapping			
PO/CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1:	3	2	2	3	1	3
CO2:	3	1	-	-	2	3
CO3:	3	_	1	1	-	2
CO4:	3	2	1	_	2	1
CO5:	3	3	1	1	-	1
Average:	3	2	1.25	1.67	1.67	2

HoD / BOS chairman

Subject Code	Subject Name	Category	L	Т	ŕ	С
CP24102	DATABASE PRACTICES	PCC	3	0	2	4

Course Objectives:

- Describe the fundamental elements of relational database management systems
- Explain the basic concepts of relational data model, entity-relationship model, relational database design, relational algebra and SQL.
- Understand query processing in a distributed database system
- Understand the basics of XML and create well-formed and valid XML documents.
- Distinguish the different types of NoSQL databases
- To understand the different models involved in database security and their applications in real time world to protect the database and information associated with them.

UNIT - I RELATIONAL DATA MODEL

15

Entity Relationship Model – Relational Data Model – Mapping Entity Relationship Model to Relational Model – Relational Algebra – Structured Query Language – Database Normalization.

Suggested Activities:

Data Definition Language

- · Create, Alter and Drop
- Enforce Primary Key, Foreign Key, Check, Unique and Not Null Constraints
- Creating Views

Data Manipulation Language

- · Insert, Delete, Update
- · Cartesian Product, Equi Join, Left Outer Join, Right Outer Join and Full Outer Join
- Aggregate Functions
- Set Operations
- Nested Queries

Transaction Control Language

Commit, Rollback and Save Points

UNIT - II DISTRIBUTED DATABASES, ACTIVE DATABASES AND OPEN DATABASE CONNECTIVITY

Distributed Database Architecture – Distributed Data Storage – Distributed Transactions – Distributed Query Processing – Distributed Transaction Management – Event Condition Action Model – Design and Implementation Issues for Active Databases – Open Database Connectivity.

Suggested Activities:

- Distributed Database Design and Implementation
- Row Level and Statement Level Triggers

Accessing a Relational Database using PHP, Python and R.

UNIT – III XML DATABASES

15

Structured, Semi structured, and Unstructured Data — XML Hierarchical Data Model — XML Documents — Document Type Definition — XML Schema — XML Documents and Databases XML Querying — XPath — XQuery. Suggested Activities:

- Creating XML Documents, Document Type Definition and XML Schema
- Using a Relational Database to store the XML documents as text
- Using a Relational Database to store the XML documents as data elements
- · Creating or publishing customized XML documents from pre-existing relational databases
- Extracting XML Documents from Relational Databases
- XML Querying.

UNIT - IV NOSQL DATABASES AND BIG DATA STORAGE SYSTEMS

15

NoSQL – Categories of NoSQL Systems – CAP Theorem – Document-Based NoSQL Systems and MongoDB – MongoDB Data Model – MongoDB Distributed Systems Characteristics – NoSQL Key- Value Stores – DynamoDB Overview – Voldemort Key-Value Distributed Data Store – Wide Column NoSQL Systems – Hbase Data Model – Hbase Crud Operations – Hbase Storage and Distributed System Concepts – NoSQL Graph Databases and Neo4j – Cypher Query Language of Neo4j – Big Data – MapReduce – Hadoop – YARN.

Suggested Activities:

 Creating Databases using MongoDB, DynamoDB, Voldemort Key-Value Distributed Data Store Hbase and Neo4j.

• Writing simple queries to access databases created using MongoDB, DynamoDB, Voldemort Key- Value Distributed Data Store Hbase and Neo4j.

UNIT – V DATABASE SECURITY

15

Database Security Issues – Discretionary Access Control Based on Granting and Revoking Privileges – Mandatory Access Control and Role-Based Access Control for Multilevel Security – SQL Injection – Statistical Database Security – Flow Control – Encryption and Public Key Infrastructures – Preserving

Data Privacy - Challenges to Maintaining Database Security - Database Survivability - Oracle Label- Based Security.

Suggested Activities:

Implementing Access Control in Relational Databases

Total Contact Hours: 75

	The second of the course students should be able to:
Course Outcomes:	Upon completion of the course students should be able to:
	:Convert the ER-model to relational tables, populate relational databases and formulate
	SQL queries on data.
CO2:	Understand and write well-formed XML documents
CO3:	Be able to apply methods and techniques for distributed query processing.
CO4:	Design and Implement secure database systems.
CO5:	Use the data control, definition, and manipulation languages of the NoSQL
	databases

Reference Books/Other Materials/Web Resources: 1. R. Elmasri, S.B. Navathe, "Fundamentals of Database Systems", Seventh Edition, Pearson

1. R. Elmasri, S.B. Navathe, "Fundamentals of Database Systems", Seventh Edition, Pearson Education 2016.

 Henry F. Korth, Abraham Silberschatz, S. Sudharshan, "Database System Concepts", Seventh Edition, McGraw Hill, 2019.

C.J.Date, A.Kannan, S.Swamynathan, "An Introduction to Database Systems, Eighth Edition, Pearson Education, 2006.

 Raghu Ramakrishnan , Johannes Gehrke "Database Management Systems", Fourth Edition, McGraw Hill Education, 2015.

5. Harrison, Guy, "Next Generation Databases, NoSQL and Big Data", First Edition, Apress publishers, 2015.

6. Thomas Cannolly and Carolyn Begg, "Database Systems, A Practical Approach to Design, Implementation and Management", Sixth Edition, Pearson Education, 2015.

HoD BOS chairman

		C	O-PO Mapping	3		
PO / CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1:	2	2	1	3	1	2
CO2:	2	2	-	2	1	1
CO3:	3	1	2	11		1
CO4:	3	2	2	1	1	1
CO5:	2	3	1	1	<u>-</u>	1
Average:	2.40	2	1.50	1.60	1	1.20

HoD BOS chairman

Subject Code	Subject Name	Category	L	Т	P	C
CP24103	NETWORK TECHNOLOGIES	PCC	3	0	0	3
Course Objectives						
To understa	and the basic concepts of networks					
To explore	various technologies in the wireless domain					
 To study al 	out 4G and 5G cellular networks					
To learn ab	out Network Function Virtualization					
To understa	and the paradigm of Software defined networks					

A O GALDONIA VIA	
TIMET I METWODEING CONCEDTS	9
UNIT - I NETWORKING CONCEPTS Network Devices Nativerk Terminology Network Speeds	
Peer To Peer Vs Client-Server Networks. Network Devices. Network Terminology. Network Speeds.	Network
throughput, delay. Osi Model. Packets, Frames, And Headers. Collision And Broadcast	
Domains. LAN Vs WAN. Network Adapter. Hub. Switch. Router. Firewall, IP addressing.	9
UNIT - II WIRELESS NETWORKS	
Wireless access techniques- IEEE 802.11a, 802.11g, 802.11e, 802.11n/ac/ax/ay/ba/be, QoS - Bluetooth	
- Protocol Stack - Security - Profiles - zigbee	
UNIT – III MOBILE DATA NETWORKS	9
4G Networks and Composite Radio Environment - Protocol Boosters - Hybrid 4G Wireless Networks	
Protocols - Green Wireless Networks - Physical Layer and Multiple Access - Channel Modelling for	257076
4G - Concepts of 5G - channel access -air interface -Cognitive Radio- spectrum management -	C- RAN
architecture - Vehicular communications-protocol - Network slicing - MIMO, mmWave, Introduction	to 6G.
UNIT – IV SOFTWARE DEFINED NETWORKS	9
SDN Architecture. Characteristics of Software-Defined Networking. SDN- and NFV-Related Standards. S	SDN Dat
Plane. Data Plane Functions. Data Plane Protocols. OpenFlow Logical Network Device.	
Flow Table Structure. Flow Table Pipeline. The Use of Multiple Tables. Group Table. OpenFlow Proto	ocol. SDI
Control Plane Architecture. Control Plane Functions. Southbound Interface. Northbound Interface. Rout	ting. ITU
T Model. OpenDaylight. OpenDaylight Architecture. OpenDaylight Helium. SDN Applicatio	n Plan
Architecture. Northbound Interface. Network Services Abstraction Layer. Network Applicati	ons. Use
Interface.	
UNIT – V NETWORK FUNCTIONS VIRTUALIZATION	9
Motivation-Virtual Machines -NFV benefits-requirements - architecture- NFV Infrastructure - V	7irtualize
Network Functions - NFV Management and Orchestration- NFV Use Cases- NFV and SDN	–Networ
virtualization – VLAN and VPN	
SUGGESTED ACTIVITIES:	
1. Execute various network utilities such as tracert, pathping, ipconfig	
2. Implement the Software Defined Networking using Mininet	
3. Implement routing in Mininet	
4. Install a virtual machine and study network virtualization	
5. Simulate various network topologies in Network Simulator	
Total Contact Hours: 45	

	Upon completion of the course students should be able to:
	Explain basic networking concepts.
	Compare different wireless networking protocols
CO3:	Describe the developments in each generation of mobile data networks
CQ4:	Explain and develop SDN based applications
HoD / BOS chairman	Principal Principal

CO5: Explain the concepts of network function virtualization

Refer	ence Books/Other Materials/Web Resources:
1.	James Bernstein, "Networking made Easy", 2018. (UNIT I)
2.	HoudaLabiod, Costantino de Santis, HossamAfifi "Wi-Fi, Bluetooth, Zigbee and WiMax", Springer 2007
	(UNIT 2)
3.	Erik Dahlman, Stefan Parkvall, Johan Skold, 4G: LTE/LTE-Advanced for Mobile Broadband, Academic
	Press, 2013 (UNIT 3)
4.	Saad Z. Asif "5G Mobile Communications Concepts and Technologies" CRC press – 2019 (UNIT 3)
5.	William Stallings "Foundations of Modern Networking: SDN, NFV, QoE, IoT, and Cloud" 1st
	Edition, Pearson Education, 2016.(Unit 4 and 5)
6.	Thomas D.Nadeau and Ken Gray, SDN – Software Defined Networks, O"Reilly Publishers,
	2013.
7.	Guy Pujolle, "Software Networks", Second Edition, Wiley-ISTE, 2020

		C	O-PO Mapping	3		
PO/CO	PO1	PO2	PO3	PO4	PO5	PO
CO1:	1	3	2	-	1	-
CO2:	1	3	3	3	-	1
CO3:	1	3	3	2	2	2
CO4:	1	2	2	1	2	1
CO5:	1	3	1	1	1	2
Average:	1	2.80	2.20	1.75	1.50	1.50

HoD BOS chairman

Subject Code	Subject Name	Category	L	Т	P	С
CP24104	PRINCIPLES OF PROGRAMMING LANGUAGES	PCC	3	0	0	3
ourse Objectives	•					
- II	od and describe syntax and semantics of programm	ing languages.				

- To understand data, data types, and basic statements.
- To understand call-return architecture and ways of implementing them.
- To understand object-orientation, concurrency, and event handling in programming
- To develop programs in non-procedural programming paradigms.

UNIT - I SYNTAX AND SEMANTICS Evolution of programming languages - describing syntax - context - free grammars -attribute grammars describing semantics – lexical analysis – parsing – recursive-descent – bottom- up parsing. UNIT - II DATA, DATA TYPES, AND BASIC STATEMENTS Names – variables – binding – type checking – scope – scope rules – lifetime and garbage collection –primitive data types-strings-array types- associative arrays-record types- union types - pointers and references Arithmetic expressions - overloaded operators - type conversions - relational and boolean expressions assignment statements - mixed- mode assignments - control structures - selection - iterations - branching guarded statements UNIT – III SUBPROGRAMS AND IMPLEMENTATIONS Subprograms - design issues - local referencing - parameter passing - overloaded methods - generic methods design issues for functions – semantics of call and return – implementing simple subprograms – stack and dynamic local variables - nested subprograms - blocks - dynamic scoping UNIT - IV OBJECT-ORIENTATION, CONCURRENCY, AND EVENT HANDLING Object-orientation - design issues for OOP languages - implementation of object-oriented constructs concurrency - semaphores - monitors - message passing - threads - statement level concurrency - exception handling – event handling UNIT - V FUNCTIONAL AND LOGIC PROGRAMMING LANGUAGES

Introduction to lambda calculus - fundamentals of functional programming languages - Programming with Scheme - Programming with ML - Introduction to logic and logic programming - Programming with Prolog multi-paradigm languages **Total Contact Hours: 45**

Course Outcomes:	Upon completion of the course students should be able to:			
CO1:	Describe syntax and semantics of programming languages.			
CO2:	Explain data, data types, and basic statements of programming languages.			
CO3:	Design and implement subprogram constructs.			
CO4:	Apply object-oriented, concurrency, and event handling programming constructs.			
COS	Develop programs in Scheme, ML, and Prolog and Understand and adopt new programming language.			

Reference Books/Other Materials/Web Resources:

Robert W. Sebesta, "Concepts of Programming Languages", Eleventh Edition, Addison Wesley, 2012.

W. F. Clocksin and C. S. Mellish, "Programming in Prolog: Using the ISO Standard", Fifth Edition, Springer, 2003.

HoD / Bos chairman

3.	Michael L.Scott, "Programming Language Pragmatics", Fourth Edition, Morgan
	Kaufmann,2009.
4.	R.KentDybvig, "TheSchemeprogramminglanguage", FourthEdition, MITPress, 2009.
5.	Richard A. O'Keefe, "The craft of Prolog", MIT Press, 2009.
6.	W.F.ClocksinandC.S.Mellish, "Programming in Prolog: Using the ISOS tandard", Fifth
	Edition, Springer, 2003.

		C	O-PO Mapping	3		
PO / CO	PO1	PO2	PO3	PO4	PO5	PO
CO1:	1	-	-	-	-	1
CO2:	1	_	1	-	1	2
CO3:	1	1	_	_	1	2
CO4:	_	2	1	1	2	2
CO5:	1	2	1	_	2	3
Average:	1	1.67	1	1	1.50	2

HoD BOS chairman

Subject Code	Subject Name	Category	L	Т	P	С
CP24111	ADVANCED DATA STRUCTURES AND ALGORITHMS LABORATORY	PCC	0	0	4	2

Course Objectives:

- To acquire the knowledge of using advanced tree structures
- To learn the usage of heap structures
- To understand the usage of graph structures and spanning trees
- To understand the problems such as matrix chain multiplication, activity selection and Huffman coding
- To understand the necessary mathematical abstraction to solve problems.

LIST OF EXPERIMENTS:

- 1: Implementation of recursive function for tree traversal and Fibonacci
- 2: Implementation of iteration function for tree traversal and Fibonacci
- 3: Implementation of Merge Sort and Quick Sort
- 4: Implementation of a Binary Search Tree
- 5: Red-Black Tree Implementation
- 6: Heap Implementation
- 7: Fibonacci Heap Implementation
- 8: Graph Traversals
- 9: Spanning Tree Implementation
- 10: Shortest Path Algorithms (Dijkstra's algorithm, Bellman Ford Algorithm)
- 11: Implementation of Matrix Chain Multiplication
- 12: Activity Selection and Huffman Coding Implementation

HARDWARE/SOFTWARE REQUIREMENTS

- 1. 64-bit Open source Linux or its derivative
- 2. Open Source C++ Programming tool like G++/GCC

Total Contact Hours: 60

Course Outcomes: Upon completion of the course students should be able to:	
CO1: Design and implement basic and advanced data structures extensively.	
CO2: Design algorithms using graph structures	
CO3: Design and develop efficient algorithms with minimum complexity	using design
techniques	
CO4: Develop programs using various algorithms.	
CO5: Choose appropriate data structures and algorithms, understand	the
ADT/libraries, and use it to design algorithms for a specific problem.	

Refer	ence Books/Other Materials/ Web Resources:
1	Lipschutz Seymour, "Data Structures Schaum's Outlines Series", Tata McGraw Hill, 3rd
1.	Edition, 2014.
2	Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman, "Data Structures and Algorithms", Pearson Education,
۷.	Reprint 2006
3.	http://www.coursera.org/specializations/data-structures-algorithms
4.	http://www.tutorialspoint.com/data_structures_algorithms
5.	http://www.geeksforgeeks.org/data-structures

HoD / BOS chairman

		C	O-PO Mapping	g	ì	
PO / CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1:	1	1	-	1	1	_
CO2:	1	-	1	2	2	1
CO3:	1	1	1	1	2	1
CO4:	1	2	2	2	2	1
CO5:	1	2	3	1	3	1
Average:	1	1.50	1.75	1.40	2	1

HoD / BOS chairman

Subject Code	Subject Name	Category	L	Т	P	C
CP24201	200				4	2
Course Objectiv	es:					
To Under	stand the Architectural Overview of IoT					
To Under	stand the IoT Reference Architecture and Real Wo	orld Design Constra	ints			
To Under	stand the various IoT levels					
To unders	stand the basics of cloud architecture					
To gain e	xperience in Raspberry PI and experiment simple	loT application on i	t			

9+6 INTRODUCTION Internet of Things- Domain Specific IoTs - IoT and M2M-Sensors for IoT Applications-Structure of IoT- IoT Map Device- IoT System Management with NETCONF-YANG 9+6 UNIT - II IOT ARCHITECTURE, GENERATIONS AND PROTOCOLS IETF architecture for IoT - IoT reference architecture -First Generation - Description & Characteristicsadvanced Generation - Description & Characteristics-Integrated IoT Sensors - Description & Characteristics 9+6 UNIT - III IOT PROTOCOLS AND TECHNOLOGY SCADA and RFID Protocols - BACnet Protocol -Zigbee Architecture - 6LowPAN - CoAP -Wireless Sensor Structure-Energy Storage Module-Power Management Module-RF Module-Sensing Module 9+6 UNIT - IV CLOUD ARCHITECTURE BASICS The Cloud types; IaaS, PaaS, SaaS.- Development environments for service development; Amazon, Azure, Google Appeloud platform in industry. UNIT - V IOT PROJECTS ON RASPBERRY PI Building IOT with RASPBERRY PI- Creating the sensor project - Preparing Raspberry Pi - Clayster libraries Hardware Interacting with the hardware - Interfacing the hardware- Internal representation of sensor values Persisting data - External representation of sensor values - Exporting sensor data. SUGGESTED ACTIVITIES: 1. Develop an application for LED Blink and Pattern using Arduino or Raspberry Pi 2. Develop an application for LED Pattern with Push Button Control using Arduino or Raspberry Pi 3. Develop an application for LM35 Temperature Sensor to display temperature values using arduino or Raspberry Pi 4. Develop an application for Forest fire detection end node using Raspberry Pi device and sensor 5. Develop an application for home intrusion detection web application 6. Develop an application for Smart parking application using python and Django for web application **Total Contact Hours: 75**

Course Outcomes:	Upon completion of the course students should be able to:
CO1:	Understand the various concept of the IoT and their technologies.
	Develop the IoT application using different hardware platforms.
	Implement the various IoT Protocols.
CO4:	Understand the basic principles of cloud computing.
CO5:	Develop and deploy the IoT application into cloud environment.

Refer	ence Books/Other Materials/Web Resources:
1.	Arshdeep Bahga, Vijay Madisetti, Internet of Things: A hands-on approach, Universities Press, 2015
2.	Dieter Uckelmann, Mark Harrison, Florian Michahelles (Eds), Architecting the Internet of Things, Springer, 2011
3.	Peter Waher, 'Learning Internet of Things', Packt Publishing,

HoD / BOS chairman

4. Ovidiu Vermesan Peter Friess, 'Internet of Things – From Research and Innovation to Market Deployment', River Publishers, 2014

5. N. Ida, Sensors, Actuators and Their Interfaces: A Multidisciplinary Introduction, 2nd Edition Scitech Publishers, 2014

6. Reese, G. (2009). Cloud Application Architectures: Building Applications and Infrastructure in the Cloud. Sebastopol, CA: O'Reilly Media, Inc. (2009)

		C	O-PO Mapping	Ş		
PO / CO	PO1	PO2	PO3	PO4	PO5	PO
CO1:	1	1	2	1	1	3
CO2:	3	2	1	2	3	2
CO3:	1	1	2	1	3	3
CO4:	2	3	2	1	2	2
CO5:	1	2	1	2	1	1
Average:	1.60	1.80	1.60	1.40	2	2.20

HoD / BOS chairman

Subject Code	Subject Name	Category	L	Т	P	С
CP24202	MULTICORE ARCHITECTURE AND PROGRAMMING	PCC	3	0	2	4
Course Objective	s:					
To understa	and the need for multi-core processors, and their arch	itecture.				
To understa	and the challenges in parallel and multithreaded prog	ramming.				
	out the various parallel programming paradigms,					
	multicore programs and design parallel solutions.					

UNIT – I MULTI-CORE PROCESSORS	9
Single core to Multi-core architectures – SIMD and MIMD systems – Interconnection networks – Symm	netric and
Distributed Shared Memory Architectures – Cache coherence – Performance Issues – Parallel program	design.
UNIT - II PARALLEL PROGRAM CHALLENGES	9
Performance - Scalability - Synchronization and data sharing - Data races - Synchronization	primitives
(mutexes, locks, semaphores, barriers) – deadlocks and livelocks – communication between threads ((condition
variables, signals, message queues and pipes).	
UNIT - III SHARED MEMORY PROGRAMMING WITH OpenMP	9
OpenMP Execution Model - Memory Model - OpenMP Directives - Work-sharing Constructs	 Library
functions - Handling Data and Functional Parallelism - Handling Loops - Performance Consideration	S.
UNIT - IV DISTRIBUTED MEMORY PROGRAMMING WITH MPI	9
MPI program execution - MPI constructs - libraries - MPI send and receive - Point-to-point and	
Collective communication – MPI derived datatypes – Performance evaluation	
UNIT - V PARALLEL PROGRAM DEVELOPMENT	9
Case studies – n-Body solvers – Tree Search – OpenMP and MPI implementations and comparison.	
Total Contact H	<u> 10urs : 45</u>
PRACTICALS:	

1. Write a simple Program to demonstrate an OpenMP Fork-Join Parallelism.

2. Create a program that computes a simple matrix-vector multiplication b=Ax, either in C/C++. Use OpenMP directives to make it run in parallel.

3. Create a program that computes the sum of all the elements in an array A (C/C++) or a program that finds the largest number in an array A. Use OpenMP directives to make it run in parallel.

4. Write a simple Program demonstrating Message-Passing logic using OpenMP.

5. Implement the All-Pairs Shortest-Path Problem (Floyd's Algorithm) Using OpenMP.

- 6. Implement a program Parallel Random Number Generators using Monte Carlo Methods in OpenMP.
- 7. Write a Program to demonstrate MPI-broadcast-and-collective-communication in C.
- 8. Write a Program to demonstrate MPI-scatter-gather-and-all gather in C.
- 9. Write a Program to demonstrate MPI-send-and-receive in C.
- 10. Write a Program to demonstrate by performing-parallel-rank-with-MPI in C.

Total Contact Hours: 30

Total Contact Hours: (45+30)=75

Course Outcomes:	Upon completion of the course students should be able to:
CO1:	Describe multicore architectures and identify their characteristics and challenges.
CO2:	Identify the issues in programming Parallel Processors.
CO3:	Write programs using OpenMP and MPI
CO4	Design parallel programming solutions to common problems.
CO5:	Compare and contrast programming for serial processors and programming for parallel
	processors

HoD / BOS chairman

	rence Books/Other Materials/Web Resources:
	Peter S. Pacheco, "An Introduction to Parallel Programming, Morgan-Kauffman/Elsevier,
1,	2021.
2	Darryl Gove, "Multicore Application Programming for Windows, Linux, and Oracle Solaris, Pearson, 2011
۷.	(unit 2)
3.	Michael J Quinn, "Parallel programming in C with MPI and OpenMP, Tata McGraw Hill,2003
4	Victor Alessandrini, Shared Memory Application Programming, 1st Edition, Concepts and
4.	Victor Alessandrini, Shared Memory Application Programming, 1st Edition, Concepts and Strategies in Multicore Application Programming, Morgan Kaufmann, 2015.
5.	Yan Solihin, Fundamentals of Parallel Multicore Architecture, CRC Press, 2015.

		C	O-PO Mapping	,		
PO / CO	PO1	PO2	PO3	PO4	PO5	PO
CO1:	1	1	1	2	1	2
CO2:	2	1	-	_	2	2
CO3:	1	-	2	1	1	2
CO4:	2	1	1	11	2	2
CO5:	3	1	2	1	2	3
Average:	1.80	1	1.50	1.25	1.60	2.20

HoD / Bos chairman

L	T	P	C
3	0	2	4
g and	d type	s of p	oblem
g	an	and type	and types of pr

- To explore the different supervised learning techniques including ensemble methods
- To learn different aspects of unsupervised learning and reinforcement learning
- To learn the role of probabilistic methods for machine learning
- To understand the basic concepts of neural networks and deep learning

What is Machine Learning? Need—History—Definitions—Applications—Advantages, Disadvantages & Challenges—Types of Machine Learning Problems—Mathematical Foundations—Linear Algebra & Analytical Geometry—Probability and Statistics—Bayesian Conditional Probability—Vector Calculus & Optimization—Decision Theory—Information theory. UNIT—II SUPERVISED LEARNING Introduction—Discriminative and Generative Models—Linear Regression—Least Squares—Under-fitting / Overfitting—Cross-Validation—Lasso Regression—Classification—Logistic Regression—Gradient Linear

Overfitting -Cross-Validation - Lasso Regression-Classification - Logistic Regression- Gradient Linear Models -Support Vector Machines -Kernel Methods -Instance based Methods - K- Nearest Neighbors - Tree based Methods -Decision Trees -ID3 - CART - Ensemble Methods - Random Forest - Evaluation of Classification Algorithms.

UNIT - III UNSUPERVISED LEARNING AND REINFORCEMENT LEARNING 9

Introduction - Clustering Algorithms -K — Means — Hierarchical Clustering - Cluster Validity Dimensionality Reduction —Principal Component Analysis — Recommendation Systems - EM algorithm. Reinforcement Learning — Elements -Model based Learning — Temporal Difference Learning.

UNIT - IV PROBABILISTIC METHODS FOR LEARNING

Introduction -Naïve Bayes Algorithm -Maximum Likelihood -Maximum Apriori -Bayesian Belief Networks Probabilistic Modelling of Problems -Inference in Bayesian Belief Networks – Probability Density Estimation Sequence Models – Markov Models – Hidden Markov Models

UNIT - V NEURAL NETWORKS AND DEEP LEARNING

Neural Networks – Biological Motivation- Perceptron – Multi-layer Perceptron – Feed Forward Network – Back Propagation-Activation and Loss Functions- Limitations of Machine Learning – Deep Learning – Convolution Neural Networks – Recurrent Neural Networks – Use cases.

Total Contact Hours: 45

SUGGESTED ACTIVITIES:

- 1. Give an example from our daily life for each type of machine learning problem
- 2. Study at least 3 Tools available for Machine Learning and discuss pros & cons of each
- 3. Take an example of a classification problem. Draw different decision trees for the example and explain the pros and cons of each decision variable at each level of the tree
- 4. Outline 10 machine learning applications in healthcare
- 5. Give 5 examples where sequential models are suitable.
- 6. Give at least 5 recent applications of CNN

PRACTICALS:

- 1. Implement a Linear Regression with a Real Dataset (https://www.kaggle.com/harrywang/housing). Experiment with different features in building a model. Tune the model's hyperparameters.
- 2. Implement a binary classification model. That is, answers a binary question such as "Are houses in this neighborhood above a certain price?" (use data from exercise 1). Modify the classification threshold and

HoD / BOS chairman

- determine how that modification influences the model. Experiment with different classification metrics to determine your model's effectiveness.
- 3. Classification with Nearest Neighbors. In this question, you will use the scikit-learn's KNN classifier to classify real vs. fake news headlines. The aim of this question is for you to read the scikit-learn API and get comfortable with training/validation splits. Use California Housing Dataset
- 4. In this exercise, you'll experiment with validation sets and test sets using the dataset. Split a training set into a smaller training set and a validation set. Analyze deltas between training set and validation set results. Test the trained model with a test set to determine whether your trained model is overfitting. Detect and fix a common training problem.
- 5. Implement the k-means algorithm using https://archive.ics.uci.edu/ml/datasets/Codon+usage dataset
- 6. Implement the Naïve Bayes Classifier using https://archive.ics.uci.edu/ml/datasets/Gait+Classification dataset
- 7. Project (in Pairs) Your project must implement one or more machine learning algorithms and apply them to some data.
 - i. Your project may be a comparison of several existing algorithms, or it may propose a new algorithm in which case you still must compare it to at least one other approach.
 - ii. You can either pick a project of your own design, or you can choose from the set of pre-defined projects.
 - iii. You are free to use any third-party ideas or code that you wish as long as it is publicly available.
 - iv. You must properly provide references to any work that is not your own in the write-up.
 - v. Project proposal You must turn in a brief project proposal. Your project proposal should
 - vi. describe the idea behind your project. You should also briefly describe software you will need to write, and papers (2-3) you plan to read.

List of Projects (datasets available)

- 1. Sentiment Analysis of Product Reviews
- 2. Stock Prediction
- 3. Sales Forecasting
- 4. Music Recommendation
- 5. Handwriting Digit Classification
- 6. Fake News Detection
- 7. Sports Prediction
- 8. Object Detection
- 9. Disease Prediction

Total Contact Hours : (45 + 30) = 75

Course Outcomes:	Upon completion of the course students should be able to:
CO1:	Understand and outline problems for each type of machine learning.
CO2:	Design a Decision tree and Random forest for an application.
CO3:	Implement Probabilistic Discriminative and Generative algorithms for an
	application and analyze the results.
CO4:	Use a tool to implement typical Clustering algorithms for different types of applications.
	Design and implement an HMM for a Sequence Model type of application and identify
	applications suitable for different types of Machine Learning with suitable justification

Reference Books/Other Materials/Web Resources:

- 1. Stephen Marsland, "Machine Learning: An Algorithmic Perspective", Chapman & Hall/CRC, 2nd Edition, 2014.
- 2. Kevin Murphy, "Machine Learning: A Probabilistic Perspective", MIT Press, 2012

3.	Ethem Alpaydin, "Introduction to Machine Learning", Third Edition, Adaptive Computation and
	Machine Learning Series, MIT Press, 2014
4.	Tom M Mitchell, "Machine Learning", McGraw Hill Education, 2013.
5.	Peter Flach, "Machine Learning: The Art and Science of Algorithms that Make Sense of
	Data", First Edition, Cambridge University Press, 2012.
6.	Shai Shalev-Shwartz and Shai Ben-David, "Understanding Machine Learning: From Theory to
	Algorithms", Cambridge University Press, 2015
7	Christopher Bishop, "Pattern Recognition and Machine Learning", Springer, 2007.
8	Hal Daumé III, "A Course in Machine Learning", 2017 (freely available online)
9	Trevor Hastie, Robert Tibshirani, Jerome Friedman, "The Elements of Statistical Learning", Springer,
	2009 (freely available online)
10.	Aurélien Géron, Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and
	Techniques to Build Intelligent Systems 2nd Edition, o'reilly, (2017)

- 100			CO-PO Mapp	ing		
PO/COI	PO1	PO2	PO3	PO4	PO5	PO6
CO1:	1	2	1	3	1	1
CO2:	2	3	1	2	1	2
CO3:	1	1	2	1	-	2
CO4:	2	2	-	_	_	3
CO5:	3	3	1	1	1	3
Average:	1.80	2.20	1.25	1.75	1	2.20

HoD / BOS chairman

Subject Code	Subject Name	Category	L.	Т	P	C
SE24201	ADVANCED SOFTWARE ENGINEERING	PCC	3	0	0	3

Course Objectives:

- To understand the rationale for software development process models.
- To understand why the architectural design of software is important;
- To understand the five important dimensions of dependabil safety, security, and resilience.
- To understand the basic notions of a web service, web service standards, and service oriented architecture;
- To understand the different stages of testing from testing system..

UNIT - I SOFTWARE PROCESS & MODELING

9

Prescriptive Process Models – Agility and Process – Scrum – XP – Kanban – DevOps – Prototype Construction – Prototype Evaluation – Prototype Evolution – Modelling – Principles – Requirements Engineering – Scenario-based Modelling – Class-based Modelling – Functional Modelling – Behavioural Modelling.

UNIT - II SOFTWARE DESIGN

9

Design Concepts – Design Model – Software Architecture – Architectural Styles – Architectural Design – Component-Level Design – User Experience Design – Design for Mobility – Pattern Based Design.

UNIT - III SYSTEM DEPENDABILITY AND SECURITY

9

Dependable Systems – Dependability Properties – Sociotechnical Systems – Redundancy and Diversity – Dependable Processes – Formal Methods and Dependability – Reliability Engineering – Availability and Reliability – Reliability Requirements – Fault-tolerant Architectures – Programming for Reliability – Reliability Measurement – Safety Engineering – Safety-critical Systems – Safety Requirements – Safety Engineering Processes – Safety Cases – Security Engineering – Security and Dependability – Safety and Organizations – Security Requirements – Secure System Design – Security Testing and Assurance – Resilience Engineering – Cybersecurity – Sociotechnical Resilience – Resilient Systems Design.

UNIT – IV SERVICE-ORIENTED SOFTWARE ENGINEERING, SYSTEMS ENGINEERING AND REAL-TIME SOFTWARE ENGINEERING

9

Service-oriented Architecture — RESTful Services — Service Engineering — Service Composition — Systems Engineering — Sociotechnical Systems — Conceptual Design — System Procurement — System Development — System Operation and Evolution — Real-time Software Engineering — Embedded System Design — Architectural Patterns for Real-time Software — Timing Analysis — Real-time Operating Systems.

UNIT – V SOFTWARE TESTING AND SOFTWARE CONFIGURATION MANAGEMENT 9

Software Testing Strategy – Unit Testing – Integration Testing – Validation Testing – System Testing – Debugging – White-Box Testing – Basis Path Testing – Control Structure Testing – Black-Box Testing – Software Configuration Management (SCM) – SCM Repository – SCM Process – Configuration Management for Web and Mobile Apps.

SUGGESTED ACTIVITIES

- 1. Comparatively analysing different Agile methodologies.
- 2. Describing the scenarios where 'Scrum' and 'Kanban' are used.
- 3. Mapping the data flow into suitable software architecture.
- 4. Developing behavioural representations for a class or component.
- 5. Implementing simple applications as RESTful service.

Total Contact Hours: 45

HoD BOS chairman

Course Outcomes:	Upon completion of the course students should be able to
CO1:	Identify appropriate process models based on the Project requirements.
CO2:	Understand the importance of having a good Software Architecture.
CO3:	Understand the five important dimensions of dependability, namely, availability, reliability, safety, security, and resilience.
CO4:	Understand the basic notions of a web service, web service standards, and service-oriented architecture.
CO5:	Be familiar with various levels of Software testing.

Refer	rence books/other materials/web resources:
1.	Software Engineering: A Practitioner's Approach, 9th Edition. Roger Pressman and Bruce
	Maxim, McGraw-Hill 2019.
2.	Software Engineering, 10th Edition, Ian Somerville, Pearson Education Asia 2016.
3.	. Software Architecture In Practice, 3rd Edition, Len Bass, Paul Clements and Rick Kazman, Pearson
	India 2018
4.	An integrated approach to Software Engineering, 3rd Edition, Pankaj Jalote, Narosa
	Publishing House, 2018
5.	Fundamentals of Software Engineering, 5th Edition, Rajib Mall, PHI Learning Private Ltd,
	2018

HoD / BOS chairman

Subject Code	Subject Name	Category	L	T	P	C
CP24211	TERM PAPER WRITING AND SEMINAR	EEC	0	0	2	1
C124211	TERMITALER WRITING MAD SEMINAR	LLC		L		

Course Objectives:

• In this course, students will develop their scientific and technical reading and writing skills that they need to understand and construct research articles. A term paper requires a student to obtain information from a variety of sources (i.e., Journals, dictionaries, reference books) and then place it in logically developed ideas.

LIST OF Works:

The work involves the following steps:

- 1. Selecting a subject, narrowing the subject into a topic
- 2. Stating an objective.
- 3. Collecting the relevant bibliography (atleast 15 journal papers)
- 4. Preparing a working outline.
- 5. Studying the papers and understanding the authors contributions and critically analysing each paper.
- 6. Preparing a working outline
- 7. Linking the papers and preparing a draft of the paper.
- 8. Preparing conclusions based on the reading of all the papers.
- 9. Writing the Final Paper and giving final Presentation

Total Contact Hours: 30

Activity	Instructions	Submission week	Evaluation
Selection of area of interest and Topic Stating an Objective	You are requested to select an area of interest, topic and state an objective	2nd week	3 % Based on clarity of thought, current relevance and clarity in writing
Collecting Information about your area & topic	 List 1 Special Interest Groups or professional society List 2 journals List 2 conferences, symposia or workshops List 1 thesis title List 3 web presences (mailing lists, forums, news sites) List 3 authors who publish regularly in your area 7. Attach a call for papers (CFP) from your area. 	3rd week	3% (the selected information must be area specific and of international and national standard)
Collection of Journal papers in the topic in the context of the objective – collect 20 & then filter	 You have to provide a complete list of references you will be using- Based on your objective -Search various digital libraries and Google Scholar When picking papers to read - try to: Pick papers that are related to each other in some ways and/or that are in 	4th week	6% (the list of standard papers and reason for selection)

	the same field so that you can write a meaningful survey out of them, Favour papers from well-known journals and conferences, Favour "first" or "foundational" papers		
Reading and notes for first 5 papers	 in the field (as indicated in other people's survey paper), Favour more recent papers, Pick a recent survey of the field so you can quickly gain an overview, Find relationships with respect to each other and to your topic area (classification scheme/categorization) Mark in the hard copy of papers whether complete work or section/sections of the paper are being considered Reading Paper Process For each paper form a Table answering the following questions: What is the main topic of the article? What was/were the main issue(s) the author said they want to discuss? Why did the author claim it was important? How does the work build on other's work, in the author's opinion? What simplifying assumptions does the author claim to be making? What did the author do? How did the author claim they were going to evaluate their work and compare it to others? 	5th week	8% (the table given should indicate your understanding of the paper and the evaluation is based on your conclusions about each paper)
	 What did the author say were the limitations of their research? What did the author say were the important directions for future research? Conclude with limitations/issues not addressed by the paper (from the perspective of your survey) 		
Reading and notes for next5 papers	Repeat Reading Paper Process	6th week	8% (the table given should indicate your understanding of the paper and the evaluation is based on your conclusions about each paper)
HoD / BOS chairman	mulei-y 34	4 1 197	Princ

C. S

Reading and notes for	Repeat Reading Paper Process	7th week	8% (the table
final 5 papers	Repeat Reading Laper Freeess	, the wook	given should indicate your
			understanding of
			the paper and the
			evaluation is based
			on your
			conclusions about
	·		each paper)
Draft outline 1 and	Prepare a draft Outline, your survey goals,	8th week	8% (this
Linking papers	along with a classification / categorization		component will be
	diagram		evaluated based on
			the linking and
			classification
			among the papers)
Abstract	Prepare a draft abstract and give a	9th week	6% (Clarity,
	presentation		purpose and
			conclusion) 6%
			Presentation &
			Viva Voce
Introduction Background	Write an introduction and background sections	10th week	5%(clarity)
Sections of the paper	Write the sections of your paper based on	11thweek	10% (this
	the classification / categorization diagram		component will be
	in keeping with the goals of your survey		evaluated based on
			the linking and
			classification
			among the papers)
Your conclusions	Write your conclusions and future work	12th week	5% (conclusions –
	1		clarity and your
			ideas)
Final Draft	Complete the final draft of your paper	13th week	10% (formatting,
			English, Clarity
			and linking) 4%
			Plagiarism Check
0 1	111000	144.0 151	Report
Seminar	A brief 15 slides on your paper	14th & 15th	10% (based on
		week	presentation and
T 10 1 1T 40			Viva-voce)
Total Contact Hours: 30			

HoD / BOS chairman

Subject Code	Subject Name	Category	L	T	P	C
CP24212	SOFTWARE ENGINEERING LABORATORY	PCC	0	0	2	1
Lab Objectives:						
To impart state-of	the-art knowledge on Software Engine man	ner through the V	Veb. e	ring ar	nd UM	IL in
an interactive						

Present case studies to demonstrate practical applications of different concepts...

• Provide a scope to students where they can solve small, real-life problems..

LIST OF EXPERIMENTS:

- 1. Write a Problem Statement to define a title of the project with bounded scope of project
- 2. Select relevant process model to define activities and related task set for assigned project
- 3. 3. Prepare broad SRS (Software Requirement Specification) for the above selected projects

4. Prepare USE Cases and Draw Use Case Diagram using modelling Tool

5. Develop the activity diagram to represent flow from one activity to another for software development

6. Develop data Designs using DFD Decision Table & ER Diagram.

- 7. Draw class diagram, sequence diagram, Collaboration Diagram, State Transition Diagram for the assigned project
- 8. Write Test Cases to Validate requirements of assigned project from SRS Document

9. Evaluate Size of the project using function point metric for the assigned project

10. Estimate cost of the project using COCOMO and COCOCMOII for the assigned project

11. Use CPM/PERT for scheduling the assigned project

12. 12. Use timeline Charts or Gantt Charts to track progress of the assigned project

Total Contact Hours: 30

Lab Outcomes:	Upon completion of the course students should be able to:
CO1:	Can produce the requirements and use cases the client wants for the software being
	Produced.
CO2:	Participate in drawing up the project plan. The plan will include at least extent and work
	assessments of the project, the schedule, available resources, and risk management can
	model and specify the requirements of mid-range software and their architecture.
CO3:	create and specify such a software design based on the requirement specification
	that the software can be implemented based on the design
CO4:	Can assess the extent and costs of a project with the help of several different assessment
	methods.

			СО-РО Марр	ing		
PO / COI	PO1	PO2	PO3	PO4	PO5	PO6
CO1:	3	3	3	3	3	3
CO2:	2	3	3	3	2	2
CO3:	3	1	2	2	1	2
CO4:	2	3	1	2	-	-
Average:	2.5	2.5	2.25	2.5	2	2.34

HoD / BOS chairman

Subject Code	Subject Name	Category	L	Т	P	С
CP24301	SECURITY PRACTICES	PCC	3	0	0	3
Course Objectives:						
• To learn the core fu	ndamentals of system and web security cor	ncepts.				
To have through un	derstanding in the security concepts related	l to networks				
To deploy the secur	ity essentials in IT Sector.					
To be exposed to the	e concepts of Cyber Security and cloud sec	eurity.				
To perform adetaile	ed study of Privacy and Storage security and	d related Issues.				

9 UNIT - I SYSTEM SECURITY Model of network security - Security attacks, services and mechanisms - OSI security architecture A Cryptography primer- Intrusion detection system- Intrusion Prevention system - Security web applications- Case study: OWASP - Top 10 Web Application Security Risks. UNIT – II NETWORK SECURITY Internet Security - Intranet security- Local Area Network Security - Wireless Network Security - Wireless Sensor Network Security- Cellular Network Security - Mobile security - IOT security - Case Study - Kali Linux. UNIT – III SECURITY MANAGEMENT Information security essentials for IT Managers- Security Management System - Policy Driven System Management- IT Security - Online Identity and User Management System. Case study: Metasploit UNIT – IV CYBER SECURITY AND CLOUD SECURITY Cyber Forensics- Disk Forensics - Network Forensics - Wireless Forensics - Database Forensics - Malware Forensics – Mobile Forensics – Email Forensics- Best security practices for automate Cloud infrastructure management – Establishing trust in IaaS, PaaS, and SaaS Cloud types. Case study: DVWA UNIT - V PRIVACY AND STORAGE SECURITY Privacy on the Internet - Privacy Enhancing Technologies - Personal privacy Policies - Detection of Conflicts in security policies- privacy and security in environment monitoring systems. Storage Area Network Security -Storage Area Network Security Devices - Risk management - Physical Security Essentials. **Total Contact Hours: 45 Course Outcomes:** Upon completion of the course students should be able to: CO1: Understand the core fundamentals of system security. CO2: Apply the security concepts to wired and wireless networks CO3: Implement and Manage the security essentials in IT Sector. CO4: Explain the concepts of Cyber Security and Cyber forensics.

Refer	ence Books/Other Materials/Web Resources:
1.	John R. Vacca, Computer and Information Security Handbook, Third Edition, Elsevier 2017.
2.	Michael E. Whitman, Herbert J. Mattord, Principles of Information Security, Seventh Edition, Cengage
	Learning, 2022
3.	Richard E. Smith, Elementary Information Security, Third Edition, Jones and Bartlett Learning, 2019
4.	Mayor, K.K.Mookhey, Jacopo Cervini, Fairuzan Roslan, Kevin Beaver, Metasploit Toolkit for
	Penetration Testing, Exploit Development and Vulnerability Research, Syngress publications,
	Elsevier, 2007. ISBN: 978-1-59749-074-0
5.	John Sammons, "The Basics of Digital Forensics- The Primer for Getting Started in Digital
	Forensics", Syngress, 2012

CO5: Be aware of Privacy and Storage security Issues.

HoD / BOS chairman

6.	Cory Altheide and Harlan Carvey, "Digital Forensics with Open Source Tools",2011 Syngress, ISBN:
	9781597495875

7.	Siani Pearson, George Yee "Privacy and Security for Cloud Computing" Computer Communications
	and Networks, Springer, 2013

			CO-PO Mapp	ing		
PO / COP	01	PO2	PO3	PO4	PO5	PO6
CO1:	1	2	1	1	2	1
CO2:	2	1	3	1	1	2
CO3:	-	-	2	3	3	3
CO4:	2	2	1	2	1	3
CO5:	1	_	1	1	2	3
Average:	1.50	1.67	1.60	1.60	1.80	2.40

HoD BOS chairman

Subject Code	Subject Name	Category	L	T	P	C
MP24001	HUMAN COMPUTER INTERACTION	PEC	3	0	0	3
Course Objectiv	es:					
To learn t	he foundations of Human Computer Interaction					
	nding Interaction Styles and to become familiar with the designith disabilities.	gn technologies	for in	ıdivi	dual	s ar
To unders	stand the process of Evaluation of Interaction Design					
To clarify	the significance of task analysis for ubiquitous computing					

UNIT – I FOUNDATIONS OF HCI

To get insight on web and mobile interaction.

9

Context of Interaction –Ergonomics - Designing Interactive systems – Understanding Users-cognition and cognitive frameworks, User Centered approaches Usability, Universal Usability, Understanding and conceptualizing interaction, Guidelines, Principles and Theories. Importance of User Interface: Definition-Importance of good design-Benefits of good design-Human-centered development and Evaluation-Human Performance models-A Brief history of screen design.

UNIT - II INTERACTION STYLES

9

GUI: Popularity of graphics - The concept of direct manipulation - Graphical system - Characteristics - Web user - Interface Popularity - Characteristics and Principles of User Interface. Understanding interaction styles, Direct Navigation and Immersive environments, Fluid navigation, Expressive Human and Command Languages, Communication and Collaboration Advancing the user experience, Timely user Experience, Information search, Data Visualization Design process: Human Interaction with computers - Importance of Human Characteristics - Human Consideration - Human Interaction Speeds and Understanding Business Junctions .

UNIT - III | EVALUATION OF INTERACTION

9

Evaluation Techniques- assessing user experience- usability testing – Heuristic evaluation and walkthroughs, analytics predictive models. Cognitive models, Socio-organizational issues and stakeholder requirements, Communication and collaboration models

UNIT – IV | MODELS AND THEORIES

9

Task analysis, dialog notations and design, Models of the system, Modeling rich interaction, Ubiquitous computing

UNIT - V WEB AND MOBILE INTERACTION

9

Hypertext, Multimedia and WWW, Designing for the web Direct Selection, Contextual Tools, Overlays, Inlays and Virtual Pages, Process Flow. Use Transitions-Lookup patterns-Feedback patterns Mobile apps, Mobile navigation, content and control idioms, Multi-touch gestures, Inter-app integration, Mobile web

Total Contact Hours: 45

Course Outcomes:	Upon completion of the course students should be able to:
CO1:	Understand the basics of human computer interactions via usability engineering and
	cognitive modelling.
CO2:	Understand the basic design paradigms, complex interaction styles
CO3:	Understand the models and theories for user interaction
CO4:	Examine the evaluation of interaction designs and implementations
CO5:	Elaborate the above issues for web and mobile applications.

Reference Books/Other Materials/Web Resources:

HoD / BOS chairman

- 1. Ben Shneiderman, Catherine Plaisant, Maxine Cohen, Steven Jacobs, NiklasElmqvist, "Designing the User Interface: Strategies for Effective Human-Computer Interaction", Sixth Edition, Pearson Education, 2016.
- 2. Alan Dix, Janet Finlay, G D Abowd and Russel Beale, "Human Computer Interaction", Pearson Education, Third Edition, 2004.
- 3. Helen Sharp Jennifer Preece Yvonne Rogers, "Interaction Design: Beyond Human-Computer Interaction", Wiley, 5th Edition, 2019.
- 4. Alan Cooper, Robert Reimann, David Cronin, Christopher Noessel, "About Face: The Essentials of Interaction Design", 4th Edition, Wiley, 2014.
- 5. Donald A. Norman, "Design of Everyday Things", MIT Press, 2013.
- 6. Wilbert O Galitz, "The Essential Guide to User Interface Design", Third Edition, Wiley India Pvt., Ltd., 2007.

			CO-PO Mapp	oing		
PO / COPO	1	PO2	PO3	PO4	PO5	PO6
CO1:	3	3	3	3	3	3
CO2:	1	_	1	2	2	1
CO3:	2	3	2	2		1
CO4:	2	3	1	2	-	2
CO5:	2	2	3	3	3	3
Average:	2	2.75	2	2.4	2.67	2

HoD / BOS chairman

Subject Code	Subject Name	Category	L	T	P	C
MP24002	CLOUD COMPUTING TECHNOLOGIES	PEC	3	0	0	3

- To gain expertise in Virtualization, Virtual Machines and deploy practical virtualization solution.
- To understand the architecture, infrastructure and delivery models of cloud computing.
- To explore the roster of AWS services and illustrate the way to make applications in AWS.
- To gain knowledge in the working of Windows Azure and Storage services offered by Windows Azure.
- To develop the cloud application using various programming model of Hadoop and Aneka

UNIT – I VIRTUALIZATION AND VIRTUALIZATION INFRASTRUCTURE

6

Basics of Virtual Machines-Process Virtual Machines-System Virtual Machines-Emulation-Interpretation-Binary Translation-Taxonomy of Virtual Machines. Virtualization-Management Virtualization-Hardware Maximization-Architectures-Virtualization Management-Storage Virtualization-Network Virtualization-Implementation levels of Virtualization-Virtualization Structure-Virtualization of CPU, Memory and I/O devices-Virtual cluster and Resource Management-Virtualization for data center automation

UNIT - II CLOUD PLATFORM ARCHITECTURE

12

Cloud Computing: Definition, Characteristics - Cloud deployment models: public, private, hybrid, community — Categories of cloud computing: Everything as a service: Infrastructure, platform, software- A Generic Cloud Architecture Design — Layered cloud Architectural Development — Architectural Design Challenges

UNIT - III | AWS CLOUD PLATFORM - IAAS

9

Amazon Web Services: AWS Infrastructure- AWS API- AWS Management Console - Setting up AWS Storage - Stretching out with Elastic Compute Cloud - Elastic Container Service for Kubernetes- AWS Developer Tools: AWS Code Commit, AWS Code Build, AWS Code Deploy, AWS Code Pipeline, AWS code Star - AWS Management Tools: Cloud Watch, AWS Auto Scaling, AWS control Tower, Cloud Formation, Cloud Trail, AWS License Manager

UNIT – IV PAAS CLOUD PLATFORM

9

Windows Azure: Origin of Windows Azure, Features, The Fabric Controller – First Cloud APP in Windows Azure- Service Model and Managing Services: Definition and Configuration, Service runtime API-Windows Azure Developer Portal- Service Management API- Windows Azure Storage Characteristics-Storage Services- REST API- Blops

UNIT - V PROGRAMMING MODEL

9

Introduction to Hadoop Framework - Mapreduce, Input splitting, map and reduce functions, specifying input and output parameters, configuring and running a job —Developing Map Reduce Applications - Design of Hadoop file system —Setting up Hadoop Cluster- Aneka: Cloud Application Platform, Thread Programming, Task Programming and Map-Reduce Programming in Aneka

Total Contact Hours :45

Course Outcomes:	Upon completion of the course students should be able to:
CO1:	Employ the concepts of virtualization in the cloud computing
CO2:	Identify the architecture, infrastructure and delivery models of cloud computing
CO3:	Develop the Cloud Application in AWS platform
CO4:	Apply the concepts of Windows Azure to design Cloud Application
CO5:	Develop services using various Cloud computing programming models.

Reference Books/Other Materials/Web Resources:

HoD / BOS chairman

1.	Bernard Golden, Amazon Web Service for Dummies, John Wiley & Sons, 2013.
2.	Raoul Alongi, AWS: The Most Complete Guide to Amazon Web Service from Beginner to Advanced
	Level, Amazon Asia- Pacific Holdings Private Limited, 2019.
3.	Sriram Krishnan, Programming: Windows Azure, O'Reilly,2010
4.	Rajkumar Buyya, Christian Vacchiola, S.Thamarai Selvi, Mastering Cloud Computing, MCGraw Hill
	Education (India) Pvt. Ltd., 2013.
5.	Danielle Ruest, Nelson Ruest, —Virtualization: A Beginner"s Guidel, McGraw-Hill Osborne Media,
	2009.
6.	Jim Smith, Ravi Nair, "Virtual Machines: Versatile Platforms for Systems and Processes",
	Elsevier/Morgan Kaufmann, 2005.
7.	John W.Rittinghouse and James F.Ransome, "Cloud Computing: Implementation, Management, and
	Security", CRC Press, 2010
8.	Toby Velte, Anthony Velte, Robert Elsenpeter, "Cloud Computing, A Practical Approach", McGraw-Hill
	Osborne Media, 2009.
9.	Tom White, "Hadoop: The Definitive Guide", Yahoo Press, 2012.

			CO-PO Mapp	oing		
PO / COPO	1	PO2	PO3	PO4	PO5	PO6
CO1:	_	-	_	2	2	1
CO2:	2	3	1	_	-	1
CO3:	3	_	3	-	1	3
CO4:	-	_	_	2	-	3
CO5:	3	2	-	_	-	
Average:	2.6	2.5	2	2	1.5	2

HoD / BOS chairman

Subject Code	Subject Name	Category	L	T	P	C
BD24001	FOUNDATIONS OF DATA SCIENCE	PEC	3	0	0	3

- To apply fundamental algorithms to process data.
- Learn to apply hypotheses and data into actionable predictions.
- Document and transfer the results and effectively communicate the findings using visualization techniques.
- To learn statistical methods and machine learning algorithms required for Data Science.
- To develop the fundamental knowledge and understand concepts to become a data science professional.

UNIT - I INTRODUCTION TO DATA SCIENCE

- (

Data science process – roles, stages in data science project – working with data from files – working with relational databases – exploring data – managing data – cleaning and sampling for modeling and validation – introduction to NoSQL.

UNIT - II MODELING METHODS

9

Choosing and evaluating models – mapping problems to machine learning, evaluating clustering models, validating models – cluster analysis – K-means algorithm, Naïve Bayes – Memorization Methods – Linear and logistic regression – unsupervised methods.

UNIT – III INTRODUCTION TO R

g

Reading and getting data into R – ordered and unordered factors – arrays and matrices – lists and data frames – reading data from files – probability distributions – statistical models in R manipulating objects – data distribution.

UNIT – IV MAP REDUCE

9

Introduction – distributed file system – algorithms using map reduce, Matrix-Vector Multiplication by Map Reduce – Hadoop - Understanding the Map Reduce architecture - Writing Hadoop MapReduce Programs - Loading data into HDFS - Executing the Map phase - Shuffling and sorting - Reducing phase execution.

UNIT – V DATA VISUALIZATION

9

Documentation and deployment – producing effective presentations – Introduction to graphical analysis – plot() function – displaying multivariate data – matrix plots – multiple plots in one window - exporting graph using graphics parameters - Case studies.

Total Contact Hours:45

Course Outcomes:	Upon completion of the course students should be able to:
CO1:	Obtain, clean/process and transform data.
CO2:	Analyze and interpret data using an ethically responsible approach.
CO3:	Use appropriate models of analysis, assess the quality of input, derive insight from
	results, and investigate potential issues.
	Apply computing theory, languages and algorithms, as well as mathematical and statistical models, and the principles of optimization to appropriately formulate and use data analyses.
CO5:	Formulate and use appropriate models of data analysis to solve business-related challenges

Reference books/other materials/webresources:

- 1. Nina Zumel, John Mount, "Practical Data Science with R", Manning Publications, 2014
- 2. Mark Gardener, "Beginning R The Statistical Programming Language", John Wiley & Sons, Inc.,
- 3. W. N. Venables, D. M. Smith and the R Core Team, "An Introduction to R", 2013.
- 4. Tony Ojeda, Sean Patrick Murphy, Benjamin Bengfort, Abhijit Dasgupta, "Practical Data Science Cookbook", Packt Publishing Ltd., 2014

HoD BOS chairman

5. Nathan Yau, "Visualize This: The FlowingData Guide to Design, Visualization, and Statistics", Wiley, 2011.

			CO-PO Mapp	ing		
PO / COPO	D1	PO2	PO3	PO4	PO5	PO6
CO1:	3	2	3	-	2	2
CO2:	-	-	2	3	_	
CO3:	1			-	3	3
CO4:	2	1	-	3		_
CO5:	1	_	3	3	-	-
Average:	1.75	1.5	2.7	3	2.5	2.5

HoD / BOS chairman

Subject Code	Subject Name	Category	L	T	P	С
MP24003	WIRELESS COMMUNICATIONS	PEC	3	0	0	3

- To understand the basic concepts in cellular communication.
- To learn the characteristics of wireless channels.
- To understand the impact of digital modulation techniques in fading.
- To get exposed to diversity techniques in wireless communication.
- To acquire knowledge in multicarrier systems.

UNIT – I CELLULAR CONCEPTS

9

Frequency Reuse – Channel Assignment Strategies – Handoff Strategies – Interference and system capacity-Co-Channel Interference – Adjacent Channel Interference – Trunking and Grade of service – Improving coverage & capacity in cellular systems-Cell Splitting- Sectoring Repeaters for Range Extension-Microcell Zone Concept.

UNIT - II THE WIRELESS CHANNEL

9

Overview of wireless systems – Physical modeling for wireless channels – Time and Frequency coherence – Statistical channel models – Capacity of wireless Channel- Capacity of Flat Fading Channel – Channel Side Information at Receiver – Channel Side Information at Transmitter and Receiver – Capacity comparisons – Capacity of Frequency Selective Fading channels.

UNIT - III PERFORMANCE OF DIGITAL MODULATION OVER WIRELESS CHANNELS

9

Performance of flat fading and frequency selective fading – Impact on digital modulation techniques — Outage Probability – Average Probability of Error — Combined Outage and Average Error Probability – Doppler Spread – Inter symbol Interference

UNIT – IV DIVERSITY TECHNIQUES

9

Realization of Independent Fading Paths – Receiver Diversity – Selection Combining – Threshold Combing – Maximal-Ratio Combining – Equal - Gain Combining – Capacity with Receiver diversity – Transmitter Diversity – Channel known at Transmitter – Channel unknown at Transmitter – The Alamouti Scheme–Transmit & Receive Diversity-MIMO Systems.

UNIT - V MULTICARRIER MODULATION

9

Data Transmission using Multiple Carriers – Multicarrier Modulation with Overlapping Sub channels – Mitigation of Subcarrier Fading – Discrete Implementation of Multicarrier Modulation – Peak to average Power Ratio-Frequency and Timing offset.

SUGGESTED ACTIVITIES:

- 1. Survey on various features of cellular networks
- 2. Study the nature of cellular networks
- 3. A comparative study on the performance of different digital modulation techniques
- 4. Perform a review of various diversity techniques in wireless communication
- 5. Presentation on design of multicarrier systems for 5G

Total Contact Hours:45

(Course Outcomes: Upon completion of the course students should be able to:
	CO1: Design solutions for cellular communication
	CO2: Determine the capacity of wireless channels
	CO3: Analyze the performance of the digital modulation techniques in fading channels
	CO4: Apply various diversity techniques in wireless communication
	CO5: Design multicarrier systems in wireless communication

Reference Books/Other Materials/Web Resources:

HoD / BOS chairman

I	1.	Theodore.S. Rappaport, "Wireless Communications: Principles and Practice", 2nd Edition, Pearson
		Education, India, 2010.
l	2.	Andrea Goldsmith, "Wireless Communications", Cambridge University Press, 2005.
l	3.	David Tse and Pramod Viswanath, "Fundamentals of Wireless Communication", Wiley Series in
I		Telecommunications, Cambridge University Press, 2005.
l		Saad Z. Asif, "5G Mobile Communications Concepts and Technologies" CRC press – 2019.
١		District The second Mathedalogy? Let adition John

Keith Q. T. Zhang, "Wireless Communications: Principles, Theory and Methodology" 1st edition, John Wiley & Sons, 2016.

6. Ramjee Prasad, "OFDM for Wireless Communication Systems", Artech House, 2004.

7. Boris Lublinsky, Kevin T. Smith, Alexey Yakubovich, "Professional Hadoop Solutions", John Wiley & Sons Inc., 2013.

CO-PO Mapping									
PO / CO	PO1	PO2	PO3	PO4	PO5	PO6			
CO1:		-	2	2	3	2			
CO2:		2	3	-	-	-			
CO3:		-	-	2	3	3			
CO4:		3	-	2	3	3			
CO5:		3	3	2	3	3			
Average		2.7	2.7	2	3	2.75			

HoD / BOS chairman

Subject Code	Subject Name	Category	L	Т	P	C
SE24001	AGILE METHODOLOGIES	PEC	3	0	0	3

- To learn the fundamental principles and practices associated with each of the agile development methods
- To apply the principles and practices of agile software development on a project of interest and relevance to the student.
- To provide a good understanding of software design and a set of software technologies and APIs.
- To do a detailed examination and demonstration of Agile development and testing techniques.
- To understand Agile development and testing.

UNIT – I AGILE SOFTWARE DEVELOPMENT

9

Basics and Fundamentals of Agile Process Methods, Values of Agile, Principles of Agile, stakeholders, Challenges. Lean Approach: Waste Management, Kaizen and Kanban, add process and products add value. Roles related to the lifecycle, differences between Agile and traditional plans, differences between Agile plans at different lifecycle phases. Testing plan links between testing, roles and key techniques, principles, understand as a means of assessing the initial status of a project/ How Agile helps to build quality

UNIT – II AGILE AND SCRUM PRINCIPLES

9

Agile Manifesto, Twelve Practices of XP, Scrum Practices, Applying Scrum. Need of scrum, working of scrum, advanced Scrum Applications, Scrum and the Organization, scrum values

UNIT – III AGILE PRODUCT MANAGEMENT

9

Communication, Planning, Estimation Managing the Agile approach Monitoring progress, Targeting and motivating the team, Managing business involvement, Escalating issue. Quality, Risk, Metrics and Measurements, Managing the Agile approach Monitoring progress, Targeting and motivating the team, Managing business involvement and Escalating issue

UNIT – IV AGILE REQUIREMENTS AND AGILE TESTING

9

User Stories, Backlog Management. Agile Architecture: Feature Driven Development. Agile Risk Management: Risk and Quality Assurance, Agile Tools. Agile Testing Techniques, Test-Driven Development, User Acceptance Test

UNIT - V AGILE REVIEW AND SCALING AGILE FOR LARGE PROJECTS

10

Agile Metrics and Measurements, The Agile approach to estimating and project variables, Agile Measurement, Agile Control: the 7 control parameters. Agile approach to Risk, The Agile approach to Configuration Management, The Atern Principles, Atern Philosophy, The rationale for using Atern, Refactoring, Continuous integration, Automated Build Tools. Scrum of Scrums, Team collaborations, Scrum, Estimate a Scrum Project, Track Scrum Projects, Communication in Scrum Projects, Best Practices to Manage Scrum.

Total Contact Hours: 45

Course Outcomes:	Upon completion of the course students should be able to:
CO1:	Analyze existing problems with the team, development process and wider organization
CO2:	Apply a thorough understanding of Agile principles and specific practices
CO3:	Select the most appropriate way to improve results for a specific circumstance or need
CO4:	Judge and craft appropriate adaptations to existing practices or processes depending
	upon analysis of typical problems
CO5:	Evaluate likely successes and formulate plans to manage likely risks or problems

Reference books/other materials/webresources:

1. Robert C. Martin, Agile Software Development, Principles, Patterns, and Practices Alan-Apt Series

HoD / BOS chairman

Principa

47

	(2011)				
2.	Succeeding with Agile: Software Development Using Scrum, Pearson (2010)				
3.	David J. Anderson and Eli Schragenheim, "Agile Management for Software Engineering: Applying				
	the Theory of Constraints for Business Results, Prentice Hall, 2003.				
4.	Hazza and Dubinsky, "Agile Software Engineering, Series: Undergraduate Topics in Computer				
	Science, Springer, 2009				
5.	Craig Larman, "Agile and Iterative Development: A Managers Guide, Addison-Wesley, 2004.				
6.	Kevin C. Desouza, "Agile Information Systems: Conceptualization, Construction, and Management,				
	Butterworth-Heinemann, 2007.				

			CO-PO Mapp			
PO / CO PO)1	PO2	PO3	PO4	PO5	PO6
CO1:	3	1	3	-	2	3
CO2:	2	-	3	3	1	3
CO3:	3	_	-	-	3	3
CO4:	2	-	1	2	3	3
CO5:	1	3	_	_	2	3
Average:	2.2	2	2.3	2.5	2.2	3

HoD / BOs chairman

Subject Code	Subject Name	Category	L	Т	P	C	
CP24001	PERFORMANCE ANALYSIS OF COMPUTER SYSTEMS	PEC	3	0	0	3	

- To understand the mathematical foundations needed for performance evaluation of computer systems
- To understand the metrics used for performance evaluation
- To understand the analytical modeling of computer systems
- To enable the students to develop new queuing analysis for both simple and complex systems
- To appreciate the use of smart scheduling and introduce the students to analytical techniques for evaluating scheduling policies

UNIT - I OVERVIEW OF PERFORMANCE EVALUATION

9

Need for Performance Evaluation in Computer Systems – Overview of Performance Evaluation Methods – Introduction to Queuing – Probability Review – Generating Random Variables for Simulation – Sample Paths, Convergence and Averages – Little's Law and other Operational Laws – Modification for Closed Systems.

UNIT - II | MARKOV CHAINS AND SIMPLE QUEUES

9

Discrete-Time Markov Chains – Ergodicity Theory – Real World Examples – Google, Aloha – Transition to Continuous-Time Markov Chain – M/M/1.

UNIT – III MULTI-SERVER AND MULTI-QUEUE SYSTEMS

9

Server Farms: M/M/k and M/M/k/k – Capacity Provisioning for Server Farms – Time Reversibility and Burke's Theorem – Networks of Queues and Jackson Product Form – Classed and Closed Networks of Queues.

UNIT – IV REAL-WORLD WORKLOADS

9

Case Study of Real-world Workloads – Phase-Type Distributions and Matrix-Alalytic Methods – Networks with Time-Sharing Servers – M/G/1 Queue and the Inspection Paradox – Task Assignment Policies for Server Farms.

UNIT - V SMART SCHEDULING IN THE M/G/1

q

Performance Metrics – Scheduling Non-Preemptive and Preemptive Non-Size-Based Policies - . Scheduling Non-Preemptive and Preemptive Size-Based Policies – Scheduling - SRPT and Fairness.

Total Contact Hours:45

	Upon completion of the course students should be able to:
CO1:	Identify the need for performance evaluation and the metrics used for it
CO2:	Distinguish between open and closed queuing networks
CO3:	Apply Little'e law and other operational laws to open and closed systems
CO4:	Use discrete-time and continuous-time Markov chains to model real world systems
CO5:	Develop analytical techniques for evaluating scheduling policies

Reference books/other materials/webresources:

- 1. K. S. Trivedi, "Probability and Statistics with Reliability, Queueing and Computer Science Applications, John Wiley and Sons, 2001.
- 2. Krishna Kant, "Introduction to Computer System Performance Evaluation, McGraw-Hill, 1992.
- 3. Lieven Eeckhout, "Computer Architecture Performance Evaluation Methods", Morgan and Claypool Publishers, 2010.
- 4. Mor Harchol Balter, "Performance Modeling and Design of Computer Systems Queueing Theory in Action," Cambridge University Press, 2013.
- 5. Paul J. Fortier and Howard E. Michel, "Computer Systems Performance Evaluation and Prediction", Elsevier, 2003.

HoD Bos chairman

6. Raj Jain, "The Art of Computer Systems Performance Analysis: Techniques for Experimental Design, Measurement, Simulation and Modelingl, Wiley-Interscience, 1991.

			CO-PO Mapp	ing	4701	
PO/COPO)1	PO2	PO3	PO4	PO5	PO6
CO1:	1	1	1	1	1	1
CO2:	2	2	3	2	11	1
CO3:	2	2	2	-	2	-
CO4:	1	_	3	_	3	1
CO5:	2	2	2	1	2	-
Average:	1.60	1.75	2.20	1.33	2.00	1.00

HoD / BO chairman

Subject Code	Subject Name	Category	L	T	P	C
CP24002	ADVANCED OPERATING SYSTEM	PEC	3	0	0	3

- To get a comprehensive knowledge of the architecture of distributed systems.
- To understand the deadlock and shared memory issues and their environments. solutions in distributed
- To know the security issues and protection mechanisms for distributed environments.
- To get a knowledge of multiprocessor operating systems and database operating systems.

UNIT - I INTRODUCTION

g

Architectures of Distributed Systems - System Architecture types - issues in distributed operating systems - communication networks - communication primitives. Theoretical Foundations - inherent limitations of a distributed system - lamport's logical clocks - vector clocks - causal ordering of messages - global state - cuts of a distributed computation - termination detection. Distributed Mutual Exclusion - introduction - the classification of mutual exclusion and associated algorithms - a comparative performance analysis.

UNIT – II DISTRIBUTED DEADLOCK DETECTION AND RESOURCE MANAGEMENT

9

Distributed Deadlock Detection -Introduction - deadlock handling strategies in distributed systems – issues in deadlock detection and resolution – control organizations for distributed deadlock detection – centralized and distributed deadlock detection algorithms – hierarchical deadlock detection algorithms. Agreement protocols – introduction-the system model, a classification of agreement problems, solutions to the Byzantine agreement problem, applications of agreement algorithms. Distributed resource management: introduction-architecture – mechanism for building distributed file systems – design issues – log structured file systems.

UNIT - III | DISTRIBUTED SHARED MEMORY AND SCHEDULING

9

Distributed shared memory-Architecture— algorithms for implementing DSM — memory coherence and protocols—design issues. Distributed Scheduling—introduction—issues in load distributing—components of a load distributing algorithm—stability—load distributing algorithms—performance comparison—selecting a suitable load sharing algorithm—requirements for load distributing—task migration and associated issues. Failure Recovery and Fault tolerance: introduction—basic concepts—classification of failures—backward and forward error recovery, backward error recovery—recovery in concurrent systems—consistent set of checkpoints—synchronous and asynchronous checkpointing and recovery—checkpointing for distributed database systems—recovery in replicated distributed databases.

UNIT – IV DATA SECURITY

9

Protection and security -preliminaries, the access matrix model and its implementations.-safety in matrix model-advanced models of protection. Data security — cryptography: Model of cryptography, conventional cryptography—modern cryptography, private key cryptography, data encryption standard—public key cryptography—multiple encryption—authentication in distributed systems.

UNIT - V MULTIPROCESSOR AND DATABASE OPERATING SYSTEM

9

Multiprocessor operating systems - basic multiprocessor system architectures - interconnection networks for multiprocessor systems - caching - hypercube architecture. Multiprocessor Operating System - structures of multiprocessor operating system, operating system design issues- threads- process synchronization and scheduling. Database Operating systems: Introduction- requirements of a database operating system Concurrency control: theoretical aspects - introduction, database systems - a concurrency control model of database systems- the problem of concurrency control - serializability theory- distributed database systems, concurrency control algorithms - introduction, basic synchronization primitives, lock based algorithms-timestamp based algorithms, optimistic algorithms - concurrency control algorithms: data replication.

Total Contact Hours:45

Course Outcomes: After the completion of this course, student will be able to

CO1: Understand and explore the working of Theoretical Foundations of OS.

HoD / BOS chairman

CO2:	Analyze the working principles of Distributed Deadlock Detection and resource
	management
CO3:	Understand the concepts of distributed shared memory and scheduling mechanisms
CO4:	Understand and analyze the working of Data security
	Apply the learning into multiprocessor system architectures.

Refe	rence Books/Other Materials/Web Resources:			
1.	Mukesh Singhal, Niranjan G.Shivaratri, "Advanced concepts in operating systems: Distributed,			
	Database and multiprocessor operating systems", TMH, 2001			
2.	Andrew S.Tanenbaum, "Modern operating system", PHI, 2003			
3.	Pradeep K.Sinha, "Distributed operating system-Concepts and design", PHI, 2003.			
4.	Andrew S.Tanenbaum, "Distributed operating system", Pearson education, 2003.			

			CO-PO Mapp	ing		
PO / COPC	01	PO2	PO3	PO4	PO5	PO6
CO1:	1	3	2	2	1	3
CO2:	2	2	3	2	1	<u>-</u>
CO3:	1	1	_	3	2	1
CO4:	1	1	2	1	2	2
CO5:	-	_			-	-
Average:	1.25	1.75	2.33	2.00	1.50	2.00

HoD / BOS chairman

Subject Code	Subject Name	Category	L	Т	P	C
MU24001	DIGITAL IMAGE PROCESSING	PEC	3	0	0	3
ourse Objectives:						

- To study fundamental concepts of digital image processing.
- To understand and learn image processing operations and restoration.
- To use the concepts of Feature Extraction
- To study the concepts of Image Compression.
- To expose students to current trends in the field of image segmentation.

UNIT - I INTRODUCTION

9

Examples of fields that use digital image processing, fundamental steps in digital image processing, components of image processing system. Digital Image Fundamentals: A simple image formation model, image sampling and quantization, basic relationships between pixels. Image enhancement in the spatial domain: Basic gray-level transformation, histogram processing, enhancement using arithmetic and logic operators, basic spatial filtering, smoothing, and sharpening spatial filters, combining the spatial enhancement methods.

Suggested Activities:

- Discussion of Mathematical Transforms.
- Numerical problem solving using Fourier Transform.
- Numerical problem solving in Image Enhancement.
- External learning Image Noise and its types.

Suggested Evaluation Methods:

- Tutorial Image transforms.
- Assignments on histogram specification, histogram equalization and spatial filters.
- Quizzes on noise modeling.

UNIT – II IMAGE RESTORATION

9

A model of the image degradation/restoration process, noise models, restoration in the presence of noise—only spatial filtering, Weiner filtering, constrained least squares filtering, geometric transforms; Introduction to the Fourier transform and the frequency domain, estimating the degradation function. Color Image Processing: Color fundamentals, color models, pseudo color image processing, basics of full—color image processing, color transforms, smoothing and sharpening, color segmentation

Suggested Activities:

- Discussion on Image Artifacts and Blur.
- Discussion of Role of Wavelet Transforms in Filter and Analysis.
- Numerical problem solving in Wavelet Transforms.
- External learning Image restoration algorithms.

Suggested Evaluation Methods:

- Tutorial Wavelet transforms.
- Assignment problems on order statistics and multi-resolution expansions.
- Quizzes on wavelet transforms.

UNIT – III FEATURE EXTRACTION

9

Detection of discontinuities – Edge linking and Boundary detection- Thresholding- -Edge based segmentation-Region based Segmentation- matching-Advanced optimal border and surface detection- Use of motion in segmentation. Image Morphology – Boundary descriptors- Regional descriptors.

Suggested Activities:

- External learning Feature selection and reduction.
- External learning Image salient features.
- Assignment on numerical problems in texture computation.

Suggested Evaluation Methods:

- Assignment problems on feature extraction and reduction.
- Quizzes on feature selection and extraction.

nan \

UNIT – IV IMAGE COMPRESSION

9

Fundamentals, image compression models, error-free compression, lossy predictive coding, image compression standards Morphological Image Processing: Preliminaries, dilation, erosion, open and closing, hit or miss transformation, basic morphological algorithms

Suggested Activities:

- Flipped classroom on different image coding techniques.
- Practical Demonstration of EXIF format for given camera.
- Practical Implementing effects quantization, color change.
- Case study of Google's WebP image format.

Suggested Evaluation Methods:

• Evaluation of the practical implementations.

Assignment on image file formats

UNIT - V IMAGE SEGMENTATION

Detection of discontinuous, edge linking and boundary detection, thresholding, region—based segmentation. Object Recognition: Patterns and patterns classes, recognition based on decision theoretic methods, matching, optimum statistical classifiers, neural networks, structural methods — matching shape numbers, string matching.

Suggested Activities:

• Flipped classroom on importance of segmentation.

Suggested Evaluation Methods:

• Tutorial - Image segmentation and edge detection.

Total Contact Hours :45

Course Outcomes:	After the completion of this course, student will be able to
CO1:	Apply knowledge of Mathematics for image processing operations
CO2:	Apply techniques for image restoration.
CO3:	Identify and extract salient features of images.
CO4:	Apply the appropriate tools (Contemporary) for image compression and analysis.
CO5:	Apply segmentation techniques and do object recognition.

Reference Books/Other Materials/Web Resources:

- 1. Digital Image Processing, Rafeal C.Gonzalez, Richard E.Woods, Second Edition, Pearson Education/PHI., 2002
- 2. Digital Image Processing, Sridhar S, Second Edition, Oxford University Press, 2016
- 3. Introduction to Digital Image Processing with Matlab, Alasdair McAndrew, Thomson Course Technology, .Brooks/Cole 2004
- 4. Milan Sonka, Vaclav Hlavac, Roger Boyle, "Image Processing, Analysis and Machine Vision", Second Edition, Thompson Learning, 2007
- 5. Digital Image Processing using Matlab, Rafeal C.Gonzalez, Richard E.Woods, Steven L. Eddins, Pearson Education, Second Edition, 2017

		(CO-PO Mappin	g	·	
PO& CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1:	2	2	-	3	-	-
CO2:	2	-	3	3	2	3
CO3:	3	3	-	2	-	_
CO4:	3	-	-	2	3	3
CO5:	2	2	2	2	2	3
Average:	2.4	2.3	2.5	2.4	2.3	3

HoD / BOS chairman

Principal

54

Subject Code	Subject Name	Category	L	Т	P	C
BD24002	HIGH PERFORMANCE COMPUTING FOR BIG DATA	PEC	3	0	0	3

- To learn the fundamental concepts of High Performance Computing.
- To learn the network & software infrastructure for high performance computing.
- To understand real time analytics using high performance computing.
- To learn the different ways of security perspectives and technologies used in HPC.
- To understand the emerging big data applications.

UNIT - I INTRODUCTION

9

The Emerging IT Trends- IOT/IOE-Apache Hadoop for big data analytics-Big data into big insights and actions – Emergence of BDA discipline – strategic implications of big data – BDA Challenges – HPC paradigms – Cluster computing – Grid Computing – Cloud computing – Heterogeneous computing – Mainframes for HPC - Supercomputing for BDA – Appliances for BDA.

UNIT – II NETWORK & SOFTWARE INFRASTRUCTURE FOR HIGH PERFORMANCE BDA

9

Design of Network Infrastructure for high performance BDA – Network Virtualization – Software Defined Networking – Network Functions Virtualization – WAN optimization for transfer of big data – started with SANs- storage infrastructure requirements for storing big data – FC SAN – IP SAN – NAS – GFS – Panasas – Luster file system – Introduction to cloud storage.

UNIT - III REAL TIME ANALYTICS USING HIGH PERFORMANCE COMPUTING

9

Technologies that support Real time analytics – MOA: Massive online analysis – GPFS: General parallel file system – Client case studies – Key distinctions – Machine data analytics – operational analytics – HPC Architecture models – In Database analytics – In memory analytics

UNIT – IV SECURITY AND TECHNOLOGIES

9

Security, Privacy and Trust for user – generated content: The challenges and solutions – Role of real time big data processing in the IoT – End to End Security Framework for big sensing data streams – Clustering in big data.

UNIT - V EMERGING BIG DATA APPLICATIONS

9

Deep learning Accelerators – Accelerators for clustering applications in machine learning - Accelerators for classification algorithms in machine learning – Accelerators for Big data Genome Sequencing

Total Contact Hours :45

Course Outcomes:	Upon completion of the course, the student should be able to
CO1:	Understand the basics concepts of High Performance computing systems.
CO2:	Apply the concepts of network and software infrastructure for high performance computing
CO3:	Use real time analytics using high performance computing.
CO4:	Apply the security models and big data applications in high performance computing
CO5:	Understand the emerging big data applications.

Reference Books/Other Materials/Web Resources:

HoD / BOS chairman

- 1. Pethuru Raj, Anupama Raman, Dhivya Nagaraj and Siddhartha Duggirala, "High Performance Big-Data Analytics: Computing Systems and Approaches", Springer, 1st Edition, 2015.
- 2. "Big Data Management and Processing", Kuan-Ching Li, Hai Jiang, Albert Y. Zomaya, CRC Press,1st Edition,2017.
- 3. "High Performance Computing for Big Data: Methodologies and Applications", Chao wang ,CRC Press,1st Edition,2018
- 4. "High-Performance Data Mining And Big Data Analytics", Khosrow Hassibi, Create Space Independent Publishing Platform, 1st Edition, 2014
- 5. "High performance computing: Modern systems and practices", Thomas Sterling, Matthew Anderson, Morgan Kaufmann publishers, 1st Edition, 2017

WEB REFERENCES:

1.https://www.hpcwire.com/

ONLINE RESOURCES:

- 1.http://hpc.fs.uni-lj.si/sites/default/files/HPC_for_dummies.pdf
- 2.https://www.nics.tennessee.edu/computing-resources/what-is-hpc

			CO-PO Mappin	g		
PO& CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1:	2	2	3	1	-	_
CO2:	-		2	3	2	2
CO3:	1	-	1	-	1	3
CO4:	3	1		-	3	
CO5:	1	-	-	2	3	-
Average:	1.75	1.5	2	2	2.25	3

HoD / BOS chairman

Subject Code	Subject Name	Category	L	Т	P	C
CP24003	INFORMATION RETRIEVAL TECHNIQUES	PEC	3	0	0	3

- To understand the basics of information retrieval with pertinence to modeling, query operations and indexing
- To get an clustering. Understanding of machine learning techniques for text classification and clustering
- To understand the various applications of information retrieval giving emphasis to multimedia IR, web search
- To get an understanding of machine learning techniques for text classification and clustering.
- To understand the concepts of digital libraries

UNIT - I INTRODUCTION: MOTIVATION

9

Basic Concepts – Practical Issues - Retrieval Process – Architecture - Boolean Retrieval Retrieval Evaluation – Open-Source IR Systems—History of Web Search – Web Characteristics—The impact of the web on IR — IR Versus Web Search—Components of a Search engine.

UNIT - II MODELING

9

Taxonomy and Characterization of IR Models – Boolean Model – Vector Model - Term Weighting – Scoring and Ranking – Language Models – Set Theoretic Models - Probabilistic Models – Algebraic Models – Structured Text Retrieval Models – Models for Browsing

UNIT – III INDEXING

9

Static and Dynamic Inverted Indices – Index Construction and Index Compression. Searching - Sequential Searching and Pattern Matching. Query Operations -Query Languages – Query Processing - Relevance Feedback and Query Expansion - Automatic Local and Global Analysis – Measuring Effectiveness and Efficiency

UNIT - IV | EVALUATION AND PARALLEL INFORMATION RETRIEVAL

9

Traditional Effectiveness Measures – Statistics in Evaluation – Minimizing Adjudication Effect – Nontraditional Effectiveness Measures – Measuring Efficiency – Efficiency Criteria – Queueing Theory – Query Scheduling – Parallel Information Retrieval – Parallel Query Processing – MapReduce

UNIT - V SEARCHING THE WEB

9

Searching the Web –Structure of the Web –IR and web search – Static and Dynamic Ranking – Web Crawling and Indexing – Link Analysis - XML Retrieval Multimedia IR: Models and Languages – Indexing and Searching Parallel and Distributed IR – Digital Libraries.

Total Contact Hours:45

Course Outcomes:	Upon completion of the course, the student should be able to
CO1:	Build an Information Retrieval system using the available tools.
CO2:	Identify and design the various components of an Information Retrieval system.
	Categorize the different types of IR Models.
CO4:	Apply machine learning techniques to text classification and clustering which is used for efficient Information Retrieval.
CO5:	Design an efficient search engine and analyze the Web content structure.

Reference Books/Other Materials/Web Resources:

HoD / BOS chairman

- 1. Christopher D. Manning, Prabhakar Raghavan, Hinrich Schutze, "Introduction to Information Retrieval, Cambridge University Press, First South Asian Edition, 2008.
- 2. Stefan Buttcher, Implementing and Evaluating Search Engines, The MIT Press, Cambridge, Massachusetts London, England, 2016.
- 3. Ricardo Baeza Yates, Berthier Ribeiro Neto, "Modern Information Retrieval: The concepts and Technology behind Search (ACM Press Books), Second Edition, 2011.
- 4. Stefan Buttcher, Charles L. A. Clarke, Gordon V. Cormack, "Information Retrieval"

	CO-PO Mapping					
PO& CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1:	2	2	1	3	3	2
CO2:	1	1	1	3	2	1
CO3:	2	1	2	3	3	3
CO4:	1	2	2	1	2	3
CO5:	2	2	3	3	1	3
Average:	1.60	1.60	1.80	2.60	2.20	2.40

Subject Code	Subject Name	Category	L	Т	P	C
CP24004	SOFTWARE QUALITY ASSURANCE	PEC	3	0	0	3

- Be exposed to the software quality factors, Quality Assurance (SQA) architecture and SQA components.
- Understand the integration of SQA components into the project life cycle.
- Be familiar with the software quality infrastructure.
- Be exposed to the management components of software quality.
- Be familiar with the Quality standards, certifications and assessments

UNIT - I INTRODUCTION TO SOFTWARE QUALITY & ARCHITECTURE

9

Need for Software quality – Software quality assurance (SQA) – Software quality factors- McCall's quality model – SQA system components – Pre project quality components – Development and quality plans.

UNIT - II SOA COMPONENTS AND PROJECT LIFE CYCLE

| 9

Integrating quality activities in the project life cycle – Reviews – Software Testing – Quality of software maintenance components – Quality assurance for external participants contribution – CASE tools for software quality Management.

UNIT - III SOFTWARE QUALITY INFRASTRUCTURE

9

Procedures and work instructions – Supporting quality devices - Staff training and certification - Corrective and preventive actions – Configuration management – Software change control – Configuration management audit - Documentation control.

UNIT – IV SOFTWARE QUALITY MANAGEMENT & METRICS

9

Project process control – Software quality metrics – Cost of software quality – Classical quality cost model – Extended model – Application and Problems in application of Cost model

UNIT - V STANDARDS, CERTIFICATIONS & ASSESSMENTS

9

Quality management standards – ISO 9001 and ISO 9000-3 –Capability Maturity Models – CMM and CMMI assessment methodologies - Bootstrap methodology – SPICE Project – SQA project process standards – Organization of Quality Assurance – Role of management in SQA – SQA units and other actors in SQA systems.

Total Contact Hours:45

	oon completion of the course, the student should be able to					
CO1:	lize the concepts of SQA in software development life cycle					
CO2:	monstrate their capability to adopt quality standards.					
CO3:	Assess the quality of software products.					
	Apply the concepts in preparing the quality plan & documents.					
CO5:	Ensure whether the product meets company's quality standards and client's					
	expectations and demands					

Reference Books/Other Materials/Web Resources:

- 1. Daniel Galin, "Software Quality Assurance", Pearson Publication, 2009.
- 2. Alan C. Gillies, "Software Quality: Theory and Management", International Thomson Computer Press, 2011
- 3. Kshirasagar Naim and Priyadarshi Tripathy," Software Testing and Quality Assurance Theory and Practice", John Wiley & Sons Inc., 2008
- 4. Mordechai Ben-Menachem "Software Quality: Producing Practical Consistent Software", International Thompson Computer Press, 2014

HoD / BOS chairman

59

		(CO-PO Mappin	g		
PO& CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1:	3	3	3	3	2	3
CO2:	2	2	2	3	2	2
CO3:	3	1	1	2	1	3
CO4:	2	2	2	3	2	11_
CO5:	1	1	1	3	1	2
Average:	2.20	1.80	1.80	2.80	1.60	2.40

HoD / BOS chairman

Arincipal

Subject Name	Category	L	T	P	C
AUTONOMOUS SYSTEMS	PEC	3	0	0	3

- To impart knowledge on the functional architecture of autonomous vehicles
- To impart knowledge on Localization and mapping fundamentals
- To impart knowledge on process end effectors and robotic controls
- To learn Robot cell design, Robot Transformation and Sensors
- To learn Micro/Nano Robotic Systems

INTRODUCTION AND FUNCTIONAL ARCHITECTURE UNIT – I

Functional architecture - Major functions in an autonomous vehicle system, Motion Modeling - Coordinate frames and transforms, point mass model, Vehicle modeling (kinematic and dynamic bicycle model - two-track models), Sensor Modeling - encoders, inertial sensors, GPS.

PERCEPTION FOR AUTONOMOUS SYSTEMS

SLAM - Localization and mapping fundamentals, LIDAR and visual SLAM, Navigation - Global path planning, Local path planning, Vehicle control - Control structures, PID control, Linear quadratic regulator, Sample controllers.

UNIT - III ROBOTICS INTRODUCTION, END EFFECTORS AND CONTROL

Robot anatomy-Definition, law of robotics, Simple problems Specifications of Robot-Speed of Robot-Robot joints and links-Robot classifications-Architecture of robotic systems, Mechanical grippers-Slider crank mechanism, Screw type, Rotary actuators, cam type-Magnetic grippers Vacuum grippers-Air operated grippers-Gripper force analysis-Gripper design-Simple problems Robot controls-Point to point control, Continuous path control, Intelligent robotControl system for robot joint-Control actions-Feedback devices-Encoder, Resolver, LVDTMotion Interpolations Adaptive control.

UNIT – IV ROBOT TRANSFORMATIONS, SENSORS AND ROBOT CELL DESIGN

Robot kinematics-Types- 2D, 3D Transformation-Scaling, Rotation, Translation- Homogeneous coordinates, multiple transformation-Simple problems. Sensors in robot – Touch sensors-Tactile, Robot work cell design and control-Sequence control, Operator interface, Safety monitoring devices in Robot-Mobile robot working principle, actuation using MATLAB, NXT Software.

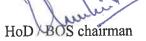
MICRO/NANO ROBOTICS SYSTEM

Micro/Nano robotics system overview-Scaling effect-Top down and bottom up approach Actuators of Micro/Nano robotics system-Nano robot communication techniques-Fabrication of micro/nano grippers-Wall climbing micro robot working principles-Biomimetic robot-Swarm robot-Nano robot in targeted drug delivery system.

Total Contact Hours: 45

Course Outcomes:	Upon completion of the course, the student should be able to
CO1:	Understand architecture and modeling of autonomous systems.
CO2:	Employ localization mapping techniques for autonomous systems
CO3:	Design solutions for autonomous systems control.
CO4:	Analyze Robot Transformations, Sensors and Cell Design
CO5:	Explain the working principles of Micro/Nano Robotic system

Reference Books/Other Materials/Web Resources:


- S.R. Deb, Robotics Technology and flexible automation, Tata McGraw-Hill Education., 2009
- Mikell P Groover & Nicholas G Odrey, Mitchel Weiss, Roger N Nagel, Ashish Dutta, Industrial Karsten Berns, Ewald Puttkamer, Springer, Autonomous Land Vehicles: Steps towards Service

HoD / BOS chairman

3.	Robots, 2009
4.	Sebastian Thrun, Wolfram Burgard, Dieter Fox., Probabilistic robotics. MIT Press, 2005
5.	Steven M. LaValle., Planning algorithms, Cambridge University Press, 2006
6.	Daniel Watzenig and Martin Horn (Eds.), Automated Driving: Safer and More Efficient Future
	Driving, Springer, 2017
7.	Markus Maurer, Autonomous driving: technical, legal and social aspects. Springer, 2016
Q	The Theory Design and Applications of Unmanned Aerial Vehicles, CRC Press, 2016

		(CO-PO Mappin	g		
PO& CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1:	1	2	3	2	3	3
CO2:	2	1	2	3	2	2
CO3:	1	2	2	-	1	1
CO4:	2	1	2	2	2	_
CO5:	3	_	-	1	-	2
Average:	1.80	1.50	2.25	2.00	2.00	2.00

Subject Code	Subject Name	Category	L 3	Т	P	C	
CP24006	WEB ANALYTICS	PEC		0	0	3	
Course Objectives:							
To understand th	To understand the Web analytics platform, and their evolution.						
To learn about the various Data Streams Data.							
To learn about th	e benefits of surveys and capturing of data						
To understand C	ommon metrics of web as well as KPI related of	concepts.					

UNIT - I INTRODUCTION

9

Definition, Process, Key terms: Site references, Keywords and Key phrases; building block terms: Visit characterization terms, Content characterization terms, Conversion metrics; Categories: Offsite web, on site web; Web analytics platform, Web analytics evolution, Need for web analytics, Advantages, Limitations.

UNIT - II DATA COLLECTION

9

Click stream Data: Web logs, Web Beacons, JavaScript tags, Packet Sniffing; Outcomes Data: E commerce, Lead generation, Brand/Advocacy and Support; Research data: Mindset, Organizational structure, Timing; Competitive Data: Panel-Based measurement, ISP-based measurement, Search Engine data.

UNIT – III QUALITATIVE ANALYSIS

To learn about the various Web analytics versions.

9

Heuristic evaluations: Conducting a heuristic evaluation, Benefits of heuristic evaluations; Site Visits: Conducting a site visit, Benefits of site visits; Surveys: Website surveys, Post-visit surveys, creating and running a survey, Benefits of surveys. Capturing data: Web logs or JavaScript's tags, Separate data serving and data capture, Type and size of data, Innovation, Integration, Selecting optimal web analytic tool, Understanding click stream data quality, Identifying unique page definition, Using cookies, Link coding issues.

UNIT - IV | WEB METRICS

9

Common metrics: Hits, Page views, Visits, Unique visitors, Unique page views, Bounce, Bounce rate, Page/visit, Average time on site, New visits; Optimization (e-commerce, non e-commerce sites): Improving bounce rates, Optimizing adwords campaigns; Real time report, Audience report, Traffic source report, Custom campaigns, Content report, Google analytics, Introduction to KPI, characteristics, Need for KPI, Perspective of KPI, Uses of KPI. Relevant Technologies: Internet & TCP/IP, Client / Server Computing, HTTP (Hypertext Transfer Protocol), Server Log Files & Cookies, Web Bugs.

UNIT – V WEB ANALYTICS 2.0

9

Web analytics 1.0, Limitations of web analytics 1.0, Introduction to analytic 2.0, Competitive intelligence analysis: CI data sources, Toolbar data, Panel data, ISP data, Search engine data, Hybrid data, Website traffic analysis: Comparing long term traffic trends, Analyzing competitive site overlap and opportunities. Google Analytics: Brief introduction and working, Adwords, Benchmarking, Categories of traffic: Organic traffic, Paid traffic; Google website optimizer, Implementation technology, Limitations, Performance concerns, Privacy issues.

Total Contact Hours :45

Course Outcomes:	Upon completion of this course, the students should be able to:
CO1:	Understand the Web analytics platform, and their evolution.
CO2:	Use the various Data Streams Data.
CO3:	Know how the survey of capturing of data will benefit.
CO4:	Understand Common metrics of web as well as KPI related concepts.
CO5:	Apply various Web analytics versions in existence.

HoD / BOS chairman

Rrincipal

Reference Books/Other Materials/Web Resources:

- 1. Clifton B., Advanced Web Metrics with Google Analytics, Wiley Publishing, Inc.2nd ed, 2012.
- 2. Kaushik A., Web Analytics 2.0, The Art of Online Accountability and Science of Customer Centricity, Wiley Publishing, Inc. 1st ed, 2010.
- 3. Sterne J., Web Metrics: Proven methods for measuring web site success, John Wiley and Sons, 2002

		(CO-PO Mappin	g		
PO& CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1:	3	-	3	2	3	2
CO2:	2	2	3	1	1	1
CO3:	3	-	3	2	2	2
CO4:	1	2	3	1	1	1
CO5:	2	-	3	2	2	1
Average:	2.20	2.00	3.00	1.60	1.80	1.40

HoD / BOS chairman

C. Principal

Subject Code	Subject Name	Category	L	Т	P	C
MP24004	COGNITIVE COMPUTING	PEC	3	0	0	3
Course Objectives:						

- To familiarize Use the Innovation Canvas to justify potentially successful products.
- To learn various ways in which to develop a product idea.
- To understand about how Big Data can play vital role in Cognitive
- To know about the business applications of Cognitive Computing
- To get into all applications of Cognitive Computing

UNIT – I FOUNDATION OF COGNITIVE COMPUTING

9

Foundation of Cognitive Computing: cognitive computing as a new generation, the uses of cognitive systems, system cognitive, gaining insights from data, Artificial Intelligence as the foundation of cognitive computing, understanding cognition Design Principles for Cognitive Systems: Components of a cognitive system, building the corpus, bringing data into cognitive system, machine learning, hypotheses generation and scoring, presentation, and visualization services

UNIT - II NATURAL LANGUAGE PROCESSING IN COGNITIVE SYSTEMS

9

Natural Language Processing in support of a Cognitive System: Role of NLP in a cognitive system, semantic web, Applying Natural language technologies to Business problems Representing knowledge in Taxonomies and Ontologies: Representing knowledge, Defining Taxonomies and Ontologies, knowledge representation, models for knowledge representation, implementation considerations

UNIT – III BIG DATA AND COGNITIVE COMPUTING

9

Relationship between Big Data and Cognitive Computing: Dealing with human-generated data, defining big data, architectural foundation, analytical data warehouses, Hadoop, data in motion and streaming data, integration of big data with traditional data Applying Advanced Analytics to cognitive computing: Advanced analytics is on a path to cognitive computing, Key capabilities in advanced analytics, using advanced analytics to create value, Impact of open source tools on advanced analytics

UNIT – IV BUSINESS IMPLICATIONS OF COGNITIVE COMPUTING

9

Preparing for change ,advantages of new disruptive models , knowledge meaning to business, difference with a cognitive systems approach , meshing data together differently, using business knowledge to plan for the future , answering business questions in new ways , building business specific solutions , making cognitive computing a reality , cognitive application changing the market The process of building a cognitive application: Emerging cognitive platform, defining the objective, defining the domain, understanding the intended users and their attributes, questions and exploring insights, training and testing

UNIT - V APPLICATION OF COGNITIVE COMPUTING

9

Building a cognitive health care application: Foundations of cognitive computing for healthcare, constituents in healthcare ecosystem, learning from patterns in healthcare Data, Building on a foundation of big data analytics, cognitive applications across the health care eco system, starting with a cognitive application for healthcare, using cognitive applications to improve health and wellness, using a cognitive application to enhance the electronic medical record Using cognitive application to improve clinical teaching

Total Contact Hours:45

Course Outcomes:	Upon completion of this course, the students should be able to:
CO1:	Explain applications in Cognitive Computing.
CO2:	Describe Natural language processor role in Cognitive computing.
CO3:	Explain future directions of Cognitive Computing
CO4:	Understand Common metrics of web as well as KPI related concepts.
CO5:	Comprehend the applications involved in this domain.

HoD / BOS chairman

Reference Books/Other Materials/Web Resources:

- 1. Judith H Hurwitz, Marcia Kaufman, Adrian Bowles, "Cognitive computing and Big Data Analytics", Wiley, 2015
- 2. Robert A. Wilson, Frank C. Keil, "The MIT Encyclopedia of the Cognitive Sciences", The MIT Press, 1999.
- 3. Noah D. Goodman, Joshua B. Tenenbaum, The ProbMods Contributors, "Probabilistic Models of Cognition", Second Edition, 2016, https://probmods.org/.

		C	O-PO Mapping	5		
PO& CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1:	1	3	2	-	2	-
CO2:	2	3	3	1	3	-
CO3:	1	2	-	-	3	-
CO4:	_	-	2	2	1	1
CO5:	2	2	1	-	1	2
Average:	1.5	2.3	2	1.5	2	1.5

HoD BOS chairman

Subject Code	Subject Name	Category	L	Т	P	C
AP24001	QUANTUM COMPUTING	PEC	3	0	0	3

- To introduce the building blocks of Quantum computers and highlight the paradigm change between conventional computing and quantum computing
- To understand the Ouantum state transformations and the algorithms
- To understand entangled quantum subsystems and properties of entangled states
- To explore the applications of quantum computing

UNIT – I QUANTUM BUILDING BLOCKS

1

The Quantum Mechanics of Photon Polarization, Single-Qubit Quantum Systems, Quantum State Spaces, Entangled States, Multiple-Qubit Systems, Measurement of Multiple-Qubit States, EPR Paradox and Bell's Theorem, Bloch sphere

UNIT - II QUANTUM STATE TRANSFORMATIONS

9

Unitary Transformations, Quantum Gates, Unitary Transformations as Quantum Circuits, Reversible Classical Computations to Quant

um Computations, Language for Quantum Implementations.

UNIT – III OUANTUM ALGORITHMS

9

Computing with Superpositions, Quantum Subroutines, Quantum Fourier Transformations, Shor's Algorithm and Generalizations, Grover's Algorithm and Generalizations

UNIT – IV ENTANGLED SUBSYSTEMS AND ROBUST QUANTUM COMPUTATION

9

Quantum Subsystems, Properties of Entangled States, Quantum Error Correction, Graph states and codes, CSS Codes, Stabilizer Codes, Fault Tolerance and Robust Quantum Computing

UNIT - V QUANTUM INFORMATION PROCESSING

19

Limitations of Quantum Computing, Alternatives to the Circuit Model of Quantum Computation, Quantum Protocols, Building Quantum, Computers, Simulating Quantum Systems, Bell states. Quantum teleportation. Quantum Cryptography, no cloning theorem

Total Contact Hours:45

Course Outcomes:	At the end of the course, the student will be able to
CO1:	Understand the basic principles of quantum computing.
CO2:	Gain knowledge of the fundamental differences between conventional computing and quantum computing.
CO3:	Understand several basic quantum computing algorithms.
CO4:	Understand the classes of problems that can be expected to be solved well by quantum computers.
CO5:	Simulate and analyze the characteristics of Quantum Computing Systems.

Reference Books/Other Materials/Web Resources:

- 1. John Gribbin, Computing with Quantum Cats: From Colossus to Qubits, 2021
- 2. William (Chuck) Easttom, Quantum Computing Fundamentals, 2021
- 3. Parag Lala, Quantum Computing, 2019
- 4. Eleanor Rieffel and Wolfgang Polak, QUANTUM COMPUTING A Gentle Introduction, 2011
- 5. Nielsen M. A., Quantum Computation and Quantum Information, Cambridge University Press.2002

HoD / BOS chairman

- Benenti G., Casati G. and Strini G., Principles of Quantum Computation and Information, Vol. I: Basic Concepts, Vol II: Basic Tools and Special Topics, World Scientific. 2004
- Pittenger A. O., An Introduction to Quantum Computing Algorithms 2000 7.

		(CO-PO Mappin	g		
PO& CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1:	1	2	3	-	11	
CO2:	1	2	3	-	2	_
CO3:	-	1	3	2	3	2
CO4:	2	_	2	2	1	3
CO5:	3	_	1	2	3	3
Average:	1.75	1.7	2.4	2	2	2.73

HoD / Bos chairman

Refe	rence Books/Other Materials/Web Resources:
1.	Jure Leskovec, AnandRajaraman, Jeffrey David Ullman, "Mining of Massive Datasets", Cambridge
	University Press, 3rd Edition, 2020
2.	Jiawei Han, MichelineKamber, Jian Pei, "Data Mining Concepts and Techniques", Morgan Kaufman
	Publications, Third Edition, 2012.
3.	Ian H. Witten, Eibe Frank "Data Mining – Practical Machine Learning Tools and Techniques",
	Morgan Kaufman Publications, Third Edition, 2011.
4.	David Hand, HeikkiMannila and Padhraic Smyth, "Principles of Data Mining", MIT PRESS, 2001
	References:
1.	https://swayam.gov.in/nd2_arp19_ap60/preview 2.
2.	https://nptel.ac.in/content/storage2/nptel_data3/html/mhrd/ict/text/106104189/lec1.pdf
	ne Resources:
1.	https://examupdates.in/big-data-analytics/
2.	https://www.tutorialspoint.com/big_data_analytics/index.htm
3.	https://www.tutorialspoint.com/data_mining/index.htm

CO-PO Mapping								
PO& CO	PO1	PO2	PO3	PO4	PO5	PO6		
CO1:		-	_	2	3	3		
CO2:	_	-	-	-	2	2		
CO3:	_	-	-	2	3	3		
CO4:	1	-	2	2	3	3		
CO5:	2.	3	2	2	3	3		
Average:	1.5	3	2	2	2.8	2.8		

HoD / BOS chairman

Subject Code	Subject Name	Category	L	T	P	C
BD24003	BIG DATA MINING AND ANALYTICS	PEC	3	0	0	3

- To understand the computational approaches to Modeling, Feature Extraction
- To understand the need and application of Map Reduce
- To understand the various search algorithms applicable to Big Data
- To analyze and interpret streaming data
- To learn how to handle large data sets in main memory and learn the various clustering techniques applicable to Big Data

UNIT – I DATA MINING AND LARGE SCALE FILES

9

Introduction to Statistical modeling – Machine Learning – Computational approaches to modeling – Summarization – Feature Extraction – Statistical Limits on Data Mining - Distributed File Systems – Mapreduce – Algorithms using Map Reduce – Efficiency of Cluster Computing Techniques.

UNIT – II SIMILAR ITEMS

9

Nearest Neighbor Search – Shingling of Documents – Similarity preserving summaries – Locality sensitive hashing for documents – Distance Measures – Theory of Locality Sensitive Functions – LSH Families – Methods for High Degree of Similarities.

UNIT – III MINING DATA STREAMS

9

Stream Data Model – Sampling Data in the Stream – Filtering Streams – Counting Distance Elements in a Stream – Estimating Moments – Counting Ones in Window – Decaying Windows.

UNIT – IV LINK ANALYSIS AND FREQUENT ITEMSETS

9

Page Rank –Efficient Computation - Topic Sensitive Page Rank – Link Spam – Market Basket Model – Apriori algorithm – Handling Larger Datasets in Main Memory – Limited Pass Algorithm – Counting Frequent Item sets.

UNIT - V CLUSTERING

9

Introduction to Clustering Techniques – Hierarchical Clustering –Algorithms – K-Means – CURE – Clustering in Non — Euclidean Spaces – Streams and Parallelism – Case Study: Advertising on the Web – Recommendation Systems.

Total Contact Hours:45

Course Outcomes:	Upon completion of this course, the students will be able to		
CO1:	Design algorithms by employing Map Reduce technique for solving Big Data		
	problems.		
CO2:	Design algorithms for Big Data by deciding on the apt Features set .		
CO3:	Design algorithms for handling petabytes of datasets		
CO4:	Design algorithms and propose solutions for Big Data by optimizing main memory consumption		
CO5:	Design solutions for problems in Big Data by suggesting appropriate clustering techniques.		

HoD / BOS chairman

Subject Code	Subject Name	Category	L	T 0	P 0	3
CP24007	MOBILE AND PERVASIVE COMPUTING	PEC	3			
Course Objective	•					
To understar	d the basics of Mobile Computing and Personal Comput	ing				
• To learn the	role of cellular networks in Mobile and Pervasive Compa	uting				
TI .	the sourcest of source and more notivious				_	_

•	To expose to the concept of sensor and mesh networks

- To expose to the context aware and wearable computing
- To learn to develop applications in mobile and pervasive computing environment

	UNIT – I	INTRODUCTION	9					
ĺ	Differences bety	ween Mobile Communication and Mobile Computing - Contexts and Names - Functions	· —					
ľ		Applications and Services - New Applications - Making Legacy Applications Mobile Enabled - Design						
ĺ	Considerations -	 Integration of Wireless and Wired Networks – Standards Bodies – Pervasive Computi 	ng –					
	Basics and Visio	on – Principles of Pervasive Computing – Categories of Pervasive Devices						
Ì	UNIT – II	3G AND 4G CELLULAR NETWORKS	9					
	Migration to 3G	Networks - IMT 2000 and UMTS - UMTS Architecture - User Equipment - Radio Net	work					
	Subsystem - U'	TRAN - Node B - RNC functions - USIM - Protocol Stack - CS and PS Domains -	IMS					

Subsystem – UTRAN – Node B – RNC functions – USIM – Protocol Stack – CS and PS Domains – IMS Architecture – Handover – 3.5G and 3.9G a brief discussion – 4G LAN and Cellular Networks – LTE – Control Plane – NAS and RRC – User Plane – PDCP, RLC and MAC – WiMax IEEE 802.16d/e – WiMax Internetworking with 3GPP

UNIT – III SENSOR AND MESH NETWORKS

9

Sensor Networks – Role in Pervasive Computing – In Network Processing and Data Dissemination – Sensor Databases – Data Management in Wireless Mobile Environments – Wireless Mesh Networks – Architecture – Mesh Routers – Mesh Clients – Routing – Cross Layer Approach – Security Aspects of Various Layers in WMN – Applications of Sensor and Mesh networks

UNIT - IV CONTEXT AWARE COMPUTING & WEARABLE COMPUTING

9

Adaptability – Mechanisms for Adaptation - Functionality and Data – Transcoding – Location Aware Computing – Location Representation – Localization Techniques – Triangulation and Scene Analysis – Delaunay Triangulation and Voronoi graphs – Types of Context – Role of Mobile Middleware – Adaptation and Agents – Service Discovery Middleware Health BAN- Medical and Technological Requirements- Wearable Sensors-Intra-BAN communications

UNIT – V APPLICATION DEVELOPMENT

9

Three tier architecture - Model View Controller Architecture - Memory Management - Information Access Devices - PDAs and Smart Phones - Smart Cards and Embedded Controls - J2ME - Programming for CLDC - GUI in MIDP - Application Development ON Android and iPhone

Total Contact Hours: 45

Course Outcomes:	Upon completion of this course, the students will be able to			
CO1: Design a basic architecture for a pervasive computing environment				
CO2:	Design and allocate the resources on the 3G-4G wireless networks			
CO3:	Analyze the role of sensors in Wireless networks			
CO4:	Work out the routing in mesh network			
CO5:	Deploy the location and context information for application development			
006	Develop mobile computing applications based on the paradigm of context aware			
CO6:	Develop mobile computing applications based on the paradigm of context aware computing and wearable computing			
0 1				

HoD / BOS chairman

Reference Books/Other Materials/Web Resources:

- 1. Asoke K Talukder, Hasan Ahmed, Roopa R Yavagal, "Mobile Computing: Technology, Applications and Service Creation", 2nd ed, Tata McGraw Hill, 2017.
- 2. Reto Meier, "Professional Android 2 Application Development", Wrox Wiley, 2010.
- 3. Pei Zheng and Lionel M Li, 'Smart Phone & Next Generation Mobile Computing', Morgan Kaufmann Publishers, 2006.
- 4. Frank Adelstein, 'Fundamentals of Mobile and Pervasive Computing', TMH, 2005
- 5. Jochen Burthardt et al, 'Pervasive Computing: Technology and Architecture of Mobile Internet Applications', Pearson Education, 2003
- 6. Feng Zhao and Leonidas Guibas, 'Wireless Sensor Networks', Morgan Kaufmann Publishers, 2004
- 7. Uwe Hansmaan et al, 'Principles of Mobile Computing', Springer, 2nd edition, 2006
- 8. Reto Meier, "Professional Android 2 Application Development", Wrox Wiley,2010.
- 9. Mohammad s. Obaidat et al, "Pervasive Computing and Networking", John wiley, 2011
- 10. Stefan Poslad, "Ubiquitous Computing: Smart Devices, Environments and Interactions", Wiley, 2009
- 11. Frank Adelstein Sandeep K. S. Gupta Golden G. Richard III Loren Schwiebert "Fundamentals of Mobile and Pervasive Computing, ", McGraw-Hill, 2005

			CO-PO Mappin	g		
PO& CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1:	3	3	1	3	1	3
CO2:	2	2	2	2	2	2
CO3:	1	3	1	1	2	2
CO4:	1	2	2	2	1	1
CO5:	2	_	2	1	2	2
Average:	1.80	2.50	1.60	1.80	1.60	2.00

HoD / Bos chairman

Subject Code	Subject Name	Category	L	Т	P	С
MP24005	WEB SERVICES AND API DESIGN	PEC	3	0	0	3

Course Objectives:

- To learn the basics of Web service.
- To become familiar with the Web Services building blocks
- To learn to work with RESTful web services.
- To implement the RESTful web services.
- To understand resource-oriented Architecture.

UNIT – I INTRODUCTION TO WEB SERVICE

9

Overview – Web service-Architecture – Service-Oriented Architecture (SOA), Architecting Web Services: Web Services Technology Stack, Logical Architectural View, Deployment Architectural View, and Process Architectural View.

UNIT - II WEB SERVICE BUILDING BLOCKS

9

Introduction to SOAP: SOAP Syntax- Sending SOAP Messages - SOAP Implementations - Introduction to WSDL: WSDL Syntax - SOAP Binding - WSDL Implementations - Introduction to UDDI: The UDDI API - Implementations - The Future of UDDI

UNIT – III RESTFUL WEB SERVICES

9

Programmable Web - HTTP: Documents in Envelopes - Method Information - Scoping Information - The Competing Architectures - Technologies on the Programmable Web -Leftover Terminology - Writing Web Service Clients: The Sample Application - Making the Request: HTTP Libraries - Processing the Response: XML Parsers - JSON Parsers: Handling Serialized Data - Clients Made Easy with WADL.

UNIT – IV IMPLEMENTATION OF RESTFUL WEB SERVICES

9

Introducing the Simple Storage Service - Object-Oriented Design of S3 - Resources - HTTP Response Codes Resource- URIs - Addressability - Statelessness - Representations - Links and Connectedness - The Uniform Interface - Spring Web Services - Spring MVC Components - Spring Web Flow - A Service Implementation using Spring Data REST.

UNIT – V RESOURCE ORIENTED ARCHITECTURE

9

Resource- URIs - Addressability - Statelessness - Representations - Links and Connectedness - The Uniform Interface- Designing Read-Only Resource-Oriented Services: Resource Design - Turning Requirements Into Read-Only Resources - Figure Out the Data Set- Split the Data Set into Resources- Name the Resources - Design Representation- Link the Resources to Each Other- The HTTP Response

Total Contact Hours:45

Course Outcomes:	Upon completion of this course, the students will be able to
CO1:	Explain how to write XML documents.
CO2:	Apply the web service building blocks such as SOAP, WSDL and UDDI
CO3:	Describe the RESTful web services.
CO4:	Implement the RESTful web service with Spring Boot MVC
CO5:	Discuss Resource-oriented Architecture.

Reference Books/Other Materials/Web Resources:

1. Leonard Richardson and Sam Ruby, RESTful Web Services, O'Reilly Media, 2007

HoD / BOS chairman

McGovern, et al., "Java Web Services Architecture", Morgan Kaufmann Publishers, 2005.
Lindsay Bassett, Introduction to JavaScript Object Notation, O'Reilly Media, 2015
Craig Walls "Spring in Action, Fifth Edition", Manning Publications, 2018
Raja CSP Raman, Ludovic Dewailly, "Building A RESTful Web Service with Spring 5", Packt
Publishing 2018
Bogunuva Mohanram Balachandar, "Restful Java Web Services, Third Edition: A pragmatic guide to
Mario-Leander Reimer, "Building RESTful Web Services with Java EE 8: Create modern RESTful web services with the Java EE 8 API", Packt publishing, 2018.

		(CO-PO Mappin	g		
PO& CO	PO1	PO2	PO3	PO4	PO5	PO
CO1:	1	3	3	-	-	-
CO2:	1	-	3	3	1	2
CO3:	-	3	3	-	-	-
CO4:	1	-	2	3	1	2
CO5:	1	-	1	=	1	-
Average:	1	3	2.4	3	1	2

Subject Code	Subject Name	Category	L 3	T 0	P 0	C
CP24008	DATA VISUALIZATION TECHNIQUES	PEC				3
Course Obje	ctives:					-
To develop sl	xills to both design and critique visualizations.					
To introduce	visual perception and core skills for visual analysis.					
To understand	d technological advancements of data visualization					
• To understar	nd various data visualization techniques					
To understan	d the methodologies used to visualize large data sets					

UNIT – I	INTRODUCTION AND DATA FOUNDATION	9					
Basics - Relationship between Visualization and Other Fields -The Visualization Process - Pseudo code Conventions - The Scatter plot. Data Foundation - Types of Data - Structure within and between Records - Data Preprocessing - Data Sets							
UNIT – II	NIT – II FOUNDATIONS FOR VISUALIZATION 9						
- Taxonomies	Visualization stages - Semiology of Graphical Symbols - The Eight Visual Variables - Historical Perspective - Taxonomies - Experimental Semiotics based on Perception Gibson's Affordance theory - A Model of Perceptual Processing.						
UNIT – III	VISUALIZATION TECHNIQUES	9					
Combining Tec of Line Data - Point-Based Te Trees Displayir UNIT – IV	one-Dimensional Data - Two-Dimensional Data - Three Dimensional Data - Dynamic Description of Point Data - Visualization of Point Data - Visualization of Point Data - Visualization of Area Data - Other Issues in Geospatial Data Visualization Multivariate Inchniques - LineBased Techniques - Region-Based Techniques - Combinations of Techniques Hierarchical Structures - Graphics and Networks- Displaying Arbitrary Graphs/Networks-Interaction Concepts And Techniques	cation Data: ues – ks. 9					
	ment Visualization: Introduction - Levels of Text Representations - The Vector Space Modern Modern Programment Visualizations - Document Collection Visualizations - Extended Text Visualizations						
	ncepts: Interaction Operators - Interaction Operands and Spaces - A Unified Frames						
Interaction Tec	hniques: Screen Space - Object-Space –Data Space Attribute Space- Data Structure Sp tructure – Animating Transformations Interaction Control.						
UNIT – V	RESEARCH DIRECTIONS IN VISUALIZATIONS	9					
Steps in designing Visualizations – Problems in designing effective Visualizations- Issues of Data. Issues of Cognition, Perception, and Reasoning. Issues of System Design Evaluation, Hardware and Applications							
	Total Contact Hours	:45					

Course Outcomes:	Jpon completion of this course, the students will be able to						
. CO1:	isualize the objects in different dimensions.						
CO2:	esign and process the data for Visualization.						
CO3:	Apply the visualization techniques in physical sciences, computer science, applied						
	mathematics and medical sciences.						
CO4:	Apply the virtualization techniques for research projects.						
CO5:	Identify appropriate data visualization techniques given particular requirements						
	imposed by the data.						

Reference Books/Other Materials/Web Resources:

- 1. Matthew Ward, Georges Grinstein and Daniel Keim, "Interactive Data Visualization Foundations, Techniques, Applications", 2010.
- 2. Colin Ware, "Information Visualization Perception for Design", 4th edition, Morgan Kaufmann Publishers, 2021.
- 3. Robert Spence "Information visualization Design for interaction", Pearson Education, 2nd Edition, 2007.
- 4. Alexandru C. Telea, "Data Visualization: Principles and Practice," A. K. Peters Ltd, 2008.

		(CO-PO Mappin	g		
PO& CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1:	3	1	2	2	1	2
CO2:	2	1	2	3	2	2
CO3:	1	-	2	2	1	1
CO4:	3	1	3	3	2	2
CO5:	2	1	3	2	1	1
Average:	2.20	1.00	2.40	2.40	1.40	1.60

HoD/BOS chairman

Subject Code	Subject Name	Category	L	T	P	C
IF24001	COMPILER OPTIMIZATION TECHNIQUES	PEC	3	0	0	3

- To understand the optimization techniques used in compiler design.
- To be aware of the various computer architectures that support parallelism.
- To become familiar with the theoretical background needed for code optimization.
- To understand the techniques used for identifying parallelism in a sequential program.
- To learn the various optimization algorithms.

UNIT – I INTRODUCTION

Language Processors - The Structure of a Compiler - The Evolution of Programming Languages- The Science of Building a Compiler - Applications of Compiler Technology Programming Language Basics - The Lexical Analyzer Generator -Parser Generator - Overview of Basic Blocks and Flow Graphs - Optimization of Basic Blocks - Principle Sources of Optimization.

UNIT - II INSTRUCTION-LEVEL PARALLELISM

9

Processor Architectures - Code-Scheduling Constraints - Basic-Block Scheduling - Global Code Scheduling - Advanced code motion techniques - Interaction with Dynamic Schedulers- Software Pipelining.

OPTIMISING FOR PARALLELISM AND LOCALITY-THEORY

Basic Concepts - Matrix-Multiply: An Example - Iteration Spaces - Affine Array Indexes - Data Reuse-Array data dependence Analysis.

OPTIMISING FOR PARALLELISM AND LOCALITY - APPLICATION

Finding Synchronisation - Free Parallelism - Synchronisation Between Parallel Loops - Pipelining - Locality Optimizations – Other Uses of Affine Transforms

INTERPROCEDURAL ANALYSIS

Basic Concepts – Need for Interprocedural Analysis – A Logical Representation of Data Flow – A Simple Pointer-Analysis Algorithm - Context Insensitive Interprocedural Analysis - Context Sensitive Pointer-Analysis - Datalog Implementation by Binary Decision Diagrams.

Total Contact Hours:45

Course Outcomes:	Upon completion of this course, the students will be able to
CO1:	Design and implement techniques used for optimization by a compiler
CO2:	Modify the existing architecture that supports parallelism.
CO3:	Modify the existing data structures of an open source optimising compiler.
CO4:	Design and implement new data structures and algorithms for code optimization.
CO5:	Critically analyse different data structures and algorithms used in the building of an optimising compiler.

Reference Books/Other Materials/Web Resources:

- Alfred V. Aho, Monica S.Lam, Ravi Sethi, Jeffrey D.Ullman, "Compilers: Principles, Techniques and Tools", Second Edition, Pearson Education, 2008.
- Randy Allen, Ken Kennedy, "Optimizing Compilers for Modern Architectures: A Dependence-based Approach", Morgan Kaufmann Publishers, 2002.

HoD BOS chairman

3.	Steven S. Muchnick, "Advanced Compiler Design and Implementation", Morgan Kaufmann
	Publishers - Elsevier Science, India, 2007
4.	John Hopcroft, Rajeev Motwani, Jeffrey Ullman, "Introduction To Automata Theory Languages, and
	Computation", Third Edition, Pearson Education, 2007.
5.	Torbengidius Mogensen, "Basics of Compiler Design", Springer, 2011.
6.	Charles N, Ron K Cytron, Richard J LeBlanc Jr., "Crafting a Compiler", Pearson Education, 2010.

		(CO-PO Mappin	g		
PO& CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1:	2	2	2	3	2	2
CO2:	-	_	3	3	-	3
CO3:	3	_	3	3	-	3
CO4:	3	3	3	3	-	-
CO5:	-	3	3	3	3	-
Average:	2.6	2.6	2.8	3	2.5	2.6

Subject Code	Subject Name	Category	L	Т	P	C
CP24009	FORMAL MODELS OF SOFTWARE SYSTEMS	PEC	3	0	0	3

Course Objectives:

- To understand the goals, complexity of software systems, the role of Specification activities and qualities to control complexity
- To understand the fundamentals of abstraction and formal systems
- To learn fundamentals of logic reasoning- Propositional Logic, temporal logic and apply to models systems
- To understand formal specification models based on set theory, calculus and algebra and apply to a case study
- To learn Z, Object Z and B Specification languages with case studies.

UNIT – I SPECIFICATION FUNDAMENTALS

0

Role of Specification- Software Complexity - Size, Structural, Environmental, Application, domain, Communication Complexity, How to Control Complexity. Software specification, Specification Activities-Integrating Formal Methods into the Software Lifecycle. Specification Qualities- Process Quality Attributes of Formal Specification Languages, Model of Process Quality, Product Quality and Utility, Conformance to Stated Goals Quality Dimensions and Quality Model.

UNIT – II FORMAL METHODS

9

Abstraction- Fundamental Abstractions in Computing. Abstractions for Software Construction. Formalism Fundamentals - Formal Systems, Formalization Process in Software Engineering Components of a Formal System- Syntax, Semantics, and Inference Mechanism. Properties of Formal Systems - Consistency. Automata-Deterministic Finite Accepters, State Machine Modeling Nondeterministic Finite Accepters, Finite State Transducers Extended Finite State Machine. Case Study—Elevator Control. Classification of C Methods-Property-Oriented Specification Methods, Model-Based Specification Techniques.

UNIT - III LOGIC

9

Propositional Logic - Reasoning Based on Adopting a Premise, Inference Based on Natural Deduction. Predicate Logic - Syntax and Semantics, Policy Language Specification, knowledge Representation Axiomatic Specification. Temporal Logic -. Temporal Logic for Specification and Verification, Temporal Abstraction Propositional Temporal Logic (PTL), First Order Temporal Logic (FOTL). Formal Verification, Verification of Simple FOTL, Model Checking, Program Graphs, Transition Systems.

UNIT – IV SPECIFICATION MODELS

9

Mathematical Abstractions for Model-Based Specifications-Formal Specification Based on Set Theory, Relations and Functions. Property-Oriented Specifications- Algebraic Specification, Properties of Algebraic Specifications, Reasoning, Structured Specifications. Case Study—A Multiple Window Environment: requirements, Modeling Formal Specifications. Calculus of Communicating Systems: Specific Calculus for Concurrency. Operational Semantics of Agents, Simulation and Equivalence, Derivation Trees, Labeled Transition Systems.

UNIT – V FORMAL LANGUAGES

| 5

The Z Notation, abstractions in Z, Representational Abstraction, Types, Relations and Functions, Sequences, Bags. Free Types-Schemas, Operational Abstraction -Operations Schema Decorators, Generic Functions, Proving Properties from Z specifications, Consistency of Operations. Additional Features in Z. Case Study: An Automated Billing System. The Object-Z Specification Language-Basic Structure of an Object-Z, Specification. Parameterized Class, Object-Orientation, composition of Operations-Parallel Communication Operator, Nondeterministic Choice Operator, and Environment Enrichment. The B-Method -Abstract Machine Notation (AMN), Structure of a B Specification, arrays, statements. Structured Specifications, Case Study- A Ticketing System in a Parking.

Total Contact Hours:45

HoD / BOS chairman

Course Outcomes:	Upon completion of this course, the students will be able to
CO1:	Understand the complexity of software systems, the need for formal specifications activities and qualities to control complexity.
CO2:	Gain knowledge on fundamentals of abstraction and formal systems
	Learn the fundamentals of logic reasoning- Propositional Logic, temporal logic and apply to models systems
	Develop formal specification models based on set theory, calculus and algebra and apply to a typical case study
CO5:	Have working knowledge on Z, Object Z and B Specification languages with casstudies.

Refe	erence Books/Other Materials/Web Resources:
1.	Mathematical Logic for computer science, second edition, M.Ben-Ari, Springer, 2012.
2.	Logic in Computer Science- modeling and reasoning about systems, 2 nd Edition, Cambridge University Press, 2004.
3.	Specification of Software Systems, V.S. Alagar, K. Periyasamy, David Grises and Fred B Schneider,
4.	The ways Z: Practical programming with formal methods, Jonathan Jacky, Cambridge University
5.	Using Z-Specification Refinement and Proof, Jim Woodcock and Jim Devies Prentice Hall, 1996
6.	Markus Roggenbach ,Antonio Cerone, Bernd-Holger Schlingloff, Gerardo Schneider , Siraj Ahmed Shaikh, Formal Methods for Software Engineering: Languages, Methods, Application Domains (Texts i

		(CO-PO Mappin	g		
PO& CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1:	1	1	3	-	2	3
CO2:	2	1	-	2	1	3
CO3:	3	1	2	3	2	3
CO4:		2	2	-	1	3
CO5:	2.	2	-	3	3	3
Average:	2.00	1.40	2.33	2.67	1.80	3.00

Subject	Code	Subject Name	Category	L	Т	P	C
AP240	002	ROBOTICS	PEC	3	0	0	3
Course Ob	ectives:						
To Int	oduce the concep	ts of Robotic systems					
To unc	lerstand the conce	pts of Instrumentation and control rela	ated to Robotics				
To unc	lerstand the kinen	natics and dynamics of robotics					
To exp	lore robotics in I	idustrial applications	•				

INTRODUCTION TO ROBOTICS

Robotics -History - Classification and Structure of Robotic Systems - Basic components -Degrees of freedom - Robot joints coordinates- Reference frames - workspace- Robot languages- Robotic sensors- proximity and range sensors, ultrasonic sensor, touch and slip sensor.

ROBOT KINEMATICS AND DYNAMICS UNIT - II

9

Kinematic Modelling: Translation and Rotation Representation, Coordinate transformation, DH parameters, Forward and inverse kinematics, Jacobian, Dynamic Modelling: Forward and inverse dynamics, Equations of motion using Euler-Lagrange formulation, Newton Euler formulation.

ROBOTICS CONTROL UNIT - III

Control of robot manipulator - state equations - constant solutions -linear feedback systems, single axis PID control - PD gravity control -computed torque control, variable structure control and impedance control.

ROBOT INTELLIGENCE AND TASK PLANNING UNIT - IV

9

Artificial Intelligence - techniques - search problem reduction - predicate logic means and end analysis problem solving -robot learning - task planning - basic problems in task planning - AI in robotics and Knowledge Based Expert System in robotics

INDUSTRIAL ROBOTICS

Robot cell design and control - cell layouts - multiple robots and machine interference - work cell design - work cell control - interlocks - error detection deduction and recovery - work cell controller - robot cycle time analysis. Safety in robotics, Applications of robot and future scope.

Total Contact Hours:45

Course Outcomes:	Upon completion of this course, the students will be able to
CO1:	Describe the fundamentals of robotics
CO2:	Understand the concept of kinematics and dynamics in robotics.
CO3:	Discuss the robot control techniques
CO4:	Explain the basis of intelligence in robotics and task planning
CO5:	Discuss the industrial applications of robotics

Reference Books/Other Materials/Web Resources:

- John J. Craig, 'Introduction to Robotics (Mechanics and Control)', Addison-Wesley, 2nd Edition, 1. 2004.
- Richard D. Klafter, Thomas A. Chmielewski, Michael Negin, 'Robotics Engineering: An Integrated 2. Approach', PHI Learning, New Delhi, 2009.
- K.S.Fu, R.C.Gonzalez and C.S.G.Lee, 'Robotics Control, Sensing, Vision and Intelligence', Tata 3. McGraw Hill, 2nd Reprint, 2008.
- Reza N. Jazar, 'Theory of Applied Robotics Kinematics, Dynamics and Control', Springer, 1st Indian 4. Reprint, 2010.

HoD / BOS chairman

5. Mikell. P. Groover, Michell Weis, Roger. N. Nagel, Nicolous G.Odrey, 'Industrial Robotics Technology, Programming and Applications', McGraw Hill, Int 2012.

		(CO-PO Mappii	ıg		
PO& CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1:	1	3	3	_	2	-
CO2:	1	2	3	2	1	1
CO3:	1	2	_	3	3	2
CO4:	2	-	3	_	2	_
CO5:	1	-	-	3	3	3
Average:	1.2	2.3	3	2.7	2.2	2

HoD BOS chairman

Subject Code	Subject Name	Category	L	Т	P	C
ML24001	NATURAL LANGUAGE PROCESSING	PEC	2	0	2	3
Course Objectives:						
To understand	d basics of linguistics, probability and statistics					
To study stati	stical approaches to NLP and understand sequence lab	eling				
To outline different to the second to t	fferent parsing techniques associated with NLP					
	emantics of words and semantic role labeling of senten	ces				
To understan	d discourse analysis, question answering and chatbots					

UNIT - I	INTRODUCTION		6
Natural Lan	guage Processing - Components - Basics of Linguistics and F	Probability and Statistics - Word	ls-
	n-Morphology-Finite State Automata		
UNIT – II	STATISTICAL NLP AND SEQUENCE LABELING		6
N-grams and	Language models -Smoothing -Text classification- Naïve	Bayes classifier Evaluation - V	ector
Semantics -	TF-IDF - Word2Vec- Evaluating Vector Models -Sequence	Labeling – Part of Speech – Pa	art of
Speech Tagg	ging -Named Entities -Named Entity Tagging		
	CONTEXTUAL EMBEDDING		6
Constituenc	y-Context Free Grammar -Lexicalized Grammars- CKY Par	sing – Earley's algorithm- Evalu	ating
Parsers -Par	tial Parsing - Dependency Relations- Dependency Parsing Tra	ansition Based - Graph Based	
	COMPUTATIONAL SEMANTICS		6
Word Sense	s and WordNet - Word Sense Disambiguation - Semantic R	Role Labeling – Proposition Ban	ık-
FrameNet- S	Selectional Restrictions - Information Extraction - Template F	illing	
UNIT – V	DISCOURSE ANALYSIS AND SPEECH PROCESSING		6
Discourse C	Oherence - Discourse Structure Parsing - Centering and Er	ntity Based Coherence - Questi	on
Answering -	-Factoid Question Answering - Classical QA Models - Chatbe	ots and Dialogue systems – Fram	ie-
based Dialo	gue Systems – Dialogue–State Architecture		
SUGGEST	ED ACTIVITIES:		
1. Probabilit	y and Statistics for NLP Problems		
	Morphological Tagging and Part-of-Speech Tagging for a sar	nple text	
	Finite State Automata for more Grammatical Categories	-	
	associated with Vector Space Model		
	ulate the working of a HMM model		
	for different types of work sense disambiguation		
	design of a Chatbot		
		Total Contact Hours	:30

SUGGESTED ACTIVITIES:

1.Probability and Statistics for NLP Problems

- 2.Carry out Morphological Tagging and Part-of-Speech Tagging for a sample text
- 3.Design a Finite State Automata for more Grammatical Categories
- 4.Problems associated with Vector Space Model
- 5. Hand Simulate the working of a HMM model
- 6.Examples for different types of work sense disambiguation
- 7. Give the design of a Chatbot

PRACTICAL EXERCISES: 1. Download nltk and packages. Use it to print the tokens in a document and the sentences from it. 2. Include custom stop words and remove them and all stop words from a given document using nltk or spaCY package 3. Implement a stemmer and a lemmatizer program

HoD / BOS chairman

- 4. Implement a simple Part-of-Speech Tagger
- 5. Write a program to calculate TFIDF of documents and find the cosine similarity between any two documents.
- 6. Use nltk to implement a dependency parser.
- 7. Implement a semantic language processor that uses WordNet for semantic tagging.
- 8. Project (in Pairs) Your project must use NLP concepts and apply them to some data.
 - a. Your project may be a comparison of several existing systems, or it may propose a new system in which case you still must compare it to at least one other approach.
 - b. You are free to use any third-party ideas or code that you wish as long as it is publicly available.
 - c. You must properly provide references to any work that is not your own in the write up.
 - d. Project proposal You must turn in a brief project proposal. Your project proposal should describe the idea behind your project. You should also briefly describe software you will need to write, and papers (2-3) you plan to read.

List of Possible Projects

- 1. Sentiment Analysis of Product Reviews
- 2. Information extraction from News articles
- 3. Customer support bot
- 4. Language identifier
- 5. Media Monitor
- 6. Paraphrase Detector
- 7. Identification of Toxic Comment
- 8. Spam Mail Identification

Total Contact Hours:30

Course Outcomes:	Upon completion of this course, the students will be able to				
CO1: Understand basics of linguistics, probability and statistics associated with NLP					
CO2:	Implement a Part-of-Speech Tagger				
CO3: Design and implement a sequence labelling problem for a given domain					
CO4:	Implement semantic processing tasks and simple document indexing and searching system using the concepts of NLP				
CO5:	Implement a simple chatbot using dialogue system concepts				

Reference Books/Other Materials/Web Resources:

- 1. Daniel Jurafsky and James H.Martin, "Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech Recognition" (Prentice Hall Series in Artificial Intelligence), 2020
- 2. Jacob Eisenstein. "Natural Language Processing", MIT Press, 2019
- 3. Samuel Burns "Natural Language Processing: A Quick Introduction to NLP with Python and NLTK, 2019
- 4. Christopher Manning, "Foundations of Statistical Natural Language Processing", MIT Press, 2009.
- 5. Nitin Indurkhya, Fred J. Damerau, "Handbook of Natural Language Processing", Second edition, Chapman & Hall/CRC: Machine Learning & Pattern Recognition, Hardcover, 2010
- **6.** Deepti Chopra, Nisheeth Joshi, "Mastering Natural Language Processing with Python", Packt Publishing Limited, 2016
- 7. Mohamed Zakaria Kurdi "Natural Language Processing and Computational Linguistics: Speech, Morphology and Syntax (Cognitive Science)", ISTE Ltd., 2016
- 8. Atefeh Farzindar, Diana Inkpen, "Natural Language Processing for Social Media (Synthesis Lectures on Human Language Technologies)", Morgan and Claypool Life Sciences, 2015

HoD BOS chairman

		(O-PO Mappin	g		44.
PO& CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1:	₩	2	3	1	1	-
CO2:	2	2	2	3	-	3
CO3:	3	-	3	3	-	3
CO4:	1	_	2	3	-	3
CO5:	1	_ >	2	3	-	3
Average:	1.75	2	2.4	2.6	. 1	3

Subject Code	Subject Name	Category	L 3	T 0	P	C
IF24002	GPU COMPUTING	PEC			0	3
Course Objectives:						
To understan	d the basics of GPU architectures					
 To understar 	d CPU GPU Program Partitioning					
To write pro	grams for massively parallel processors					
To understar	d the issues in mapping algorithms for GPUs					
	different GPU programming models					

UNIT – I GPU ARCHITECTURE	9
Evolution of GPU architectures - Understanding Parallelism with GPU - Typical GPU Architecture - CUDA Hardwar	re
Overview - Threads, Blocks, Grids, Warps, Scheduling - Memory Handling with CUDA: Shared Memory, Globa	al
Memory, Constant Memory and Texture Memory.	
UNIT – II CUDA PROGRAMMING	9
Using CUDA - Multi GPU - Multi GPU Solutions - Optimizing CUDA Applications: Problem	m
Decomposition, Memory Considerations, Transfers, Thread Usage, Resource Contentions.	
UNIT - III PROGRAMMING ISSUES	9
Common Problems: CUDA Error Handling, Parallel Programming Issues, Synchronization, Algorithm	ic
Issues, Finding and Avoiding Errors.	
UNIT - IV OPENCL BASICS	9
OpenCL Standard - Kernels - Host Device Interaction - Execution Environment - Memory Model - Basi	ic
OpenCL Examples.	
UNIT – V ALGORITHMS ON GPU	9
Parallel Patterns: Convolution, Prefix Sum, Sparse Matrix - Matrix Multiplication - Programmin	ıg
Heterogeneous Cluster.	
SUGGESTED ACTIVITIES:	
1. Debugging Lab	
2. Performance Lab	
3. Launching Nsight	
4. Running Performance Analysis	
5. Understanding Metrics	
6. NVIDIA Visual Profiler	
7. Matrix Transpose Optimization	
8. Reduction Optimization	

Course Outcomes:	Course Outcomes: Upon completion of this course, the students will be able to				
CO1: Describe GPU Architecture					
CO2: Write programs using CUDA, identify issues and debug them					
CO3:	Implement efficient algorithms in GPUs for common application kernels, such as				
	matrix multiplication				
CO4:	Write simple programs using OpenCL				
CO5:	Identify efficient parallel programming patterns to solve problems				

Principal

Total Contact Hours :45

Refe	ence Books/Other Materials/Web Resources:					
1.	Shane Cook, CUDA Programming: "A Developer's Guide to Parallel Computing with GPUs					
	(Applications of GPU Computing), First Edition, Morgan Kaufmann, 2012.					
2.	David R. Kaeli, Perhaad Mistry, Dana Schaa, Dong Ping Zhang, "Heterogeneous computing with					
	OpenCL, 3rd Edition, Morgan Kauffman, 2015.					
3.	Nicholas Wilt, "CUDA Handbook: A Comprehensive Guide to GPU Programming, Addison -					
	Wesley, 2013.					
4.	Jason Sanders, Edward Kandrot, "CUDA by Example: An Introduction to General Purpose GPU					
	Programming, Addison - Wesley, 2010.					
5.	David B. Kirk, Wen-mei W. Hwu, Programming Massively Parallel Processors - A Hands-on					
	Approach, Third Edition, Morgan Kaufmann, 2016.					
6.	http://www.nvidia.com/object/cuda home new.html					
7.	http://www.openCL.org					

		(CO-PO Mappin	g		
PO& CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1:	3	-	-	-	-	-
CO2:	-	-	2	-	-	-
CO3:	-	-	3	-	3	3
CO4:		2	_	3	2	-
CO5:	-	-	-	2	-	3
Average:	3	2	2.5	2.5	2.5	3

Subject Code	Subject Name	Category	L 3	T 0	P 2	C
IF24003	DEVOPS AND MICROSERVICES	PEC				4
Course Objectives:						
To learn the ba	sic concepts and terminology of DevOps					
To gain knowle	edge on Devops platform					
To understand	building and deployment of code					
• To be familiar	with DevOps automation tools					
To learn basics	of MLOps					

UNIT - I INTRODUCTION

9+

Software Engineering - traditional and Agile process models - DevOps -Definition - Practices - DevOps life cycle process - need for DevOps -Barriers

UNIT – II DEVOPS PLATFORM AND SERVICES

9+

Cloud as a platform - IaaS, PaaS, SaaS - Virtualization - Containers - Supporting Multiple Data Centers - Operation Services - Hardware provisioning - software Provisioning - IT services - SLA - capacity planning - security - Service Transition - Service Operation Concepts.

UNIT - III BUILDING, TESTING AND DEPLOYMENT

9+6

Microservices architecture - coordination model - building and testing - Deployment pipeline - Development and Pre-commit Testing -Build and Integration Testing - continuous integration - monitoring - security - Resources to Be Protected - Identity Management

UNIT – IV DEVOPS AUTOMATION TOOLS

9+6

Infrastructure Automation- Configuration Management - Deployment Automation - Performance Management - Log Management - Monitoring.

UNIT - V MLOPS

9+6

MLOps - Definition - Challenges -Developing Models - Deploying to production - Model Governance - Real world examples

SUGGESTED ACTIVITIES:

- 1. Creating a new Git repository, cloning existing repository, Checking changes into a Git repository, Pushing changes to a Git remote, Creating a Git branch
- 2. Installing Docker container on windows/Linux, issuing docker commands
- 3. Building Docker Images for Python Application
- 4. Setting up Docker and Maven in Jenkins and First Pipeline Run
- 5. 5. Running Unit Tests and Integration Tests in Jenkins Pipelines

Total Contact Hours:75

Course Outcomes:	Course Outcomes: Upon completion of this course, the students will be able to			
CO1:	Implement modern software Engineering process			
CO2:	work with DevOps platform			
CO3:	CO3: build, test and deploy code			
CO4:	Explore DevOps tools			
CO5:	Correlate MLOps concepts with real time examples			

HoD / BOS chairman

C. Principal

Refe	rence Books/Other Materials/Web Resources:
1.	Len Bass, Ingo Weber and Liming Zhu, —"DevOps: A Software Architect's Perspective", Pearson
	Education, 2016
2.	Joakim Verona - "Practical DevOps" - Packet Publishing, 2016
3.	Viktor Farcic -"The DevOps 2.1 Toolkit: Docker Swarm" - Packet Publishing, 2017
4.	Mark Treveil, and the Dataiku Team-"Introducing MLOps" - O'Reilly Media- 2020

		(CO-PO Mappin	g		
PO& CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1:	3	2	1	2	3	_
CO2:	3	2	-	-	3	-
CO3:	3	2	2	3	2	3
CO4:	3	2	1	2	3	
CO5:	3	2	2	1	2	3
Average:	3	2	1.5	2	2.6	3

Subject Code	Subject Name	Category	L	Т	P	C
MP24006	MOBILE APPLICATION DEVELOPMENT	PEC	3	0	2	4

Course Objectives:

- To facilitate students to understand android SDK
- To help students to gain basic understanding of Android application development
- To understand how to work with various mobile application development frameworks
- To inculcate working knowledge of Android Studio development tool
- To learn the basic and important design concepts and issues of development of mobile applications

UNIT – I MOBILE PLATFORM AND APPLICATIONS

9

Mobile Device Operating Systems — Special Constraints & Requirements — Commercial Mobile Operating Systems — Software Development Kit: iOS, Android, BlackBerry, Windows Phone — MCommerce — Structure — Pros & Cons — Mobile Payment System — Security Issues

UNIT – II INTRODUCTION TO ANDROID

9

Introduction to Android: The Android Platform, Android SDK, Eclipse Installation, Android Installation, Building you First Android application, Understanding Anatomy of Android Application, Android Manifest file.

UNIT – III ANDROID APPLICATION DESIGN ESSENTIALS

9

Anatomy of Android applications, Android terminologies, Application Context, Activities, Services, Intents, Receiving and Broadcasting Intents, Android Manifest File and its common settings, Using Intent Filter, Permissions.

UNIT – IV ANDROID USER INTERFACE DESIGN & MULTIMEDIA

9

User Interface Screen elements, Designing User Interfaces with Layouts, Drawing and Working with Animation. Playing Audio and Video, Recording Audio and Video, Using the Camera to Take and Process Pictures

UNIT - V ANDROID APIS

q

Using Android Data and Storage APIs, Managing data using Sqlite, Sharing Data between Applications with Content Providers, Using Android Networking APIs, Using Android Web APIs, Using Android Telephony APIs, Deploying Android Application to the World.

Total Contact Hours :45

LIST OF EXPERIMENTS:

- 1. Develop an application that uses GUI components, Font, Layout Managers and event listeners.
- 2. Develop an application that makes use of databases
- 3. Develop a native application that uses GPS location information
- 4. Implement an application that creates an alert upon receiving a message
- 5. Develop an application that makes use of RSS Feed.
- 6. Create an application using Sensor Manager
- 7. Create an android application that converts the user input text to voice.
- 8. Develop a Mobile application for simple and day to day needs (Mini Project)

HoD / BOS chairman

Principal

90

Course Outcomes:	Upon completion of this course, the students will be able to			
CO1:	Identify various concepts of mobile programming that make it unique from programming for other platforms			
CO2: Create, test and debug Android application by setting up Android development				
	Demonstrate methods in storing, sharing and retrieving data in Android applications			
	Utilize rapid prototyping techniques to design and develop sophisticated mobile interfaces			
CO5:	Create interactive applications in android using databases with multiple activities including audio, video and notifications and deploy them in marketplace			

	rence Books/Other Materials/Web Resources:
1.	Lauren Darcey and Shane Conder, "Android Wireless Application Development", Pearson Education, 2nd ed. (2011)
2.	Google Developer Training, "Android Developer Fundamentals Course – Concept Reference", Google Developer Training Team, 2017.
3.	Prasanth Kumar Pattnaik, Rajib Mall, "Fundamentals of Mobile Computing", PHI Learning Pvt.Ltd. New Delhi-2012
4.	Reto Meier, "Professional Android 2 Application Development", Wiley India Pvt Ltd, 2010
5.	Mark L Murphy, "Beginning Android", Wiley India Pvt Ltd, 2009
6.	Dawn Griffiths and David Griffiths, "Head First Android Development", 1st Edition, O"Reilly SPD Publishers, 2015. ISBN-13: 978-9352131341
7.	Erik Hellman, "Android Programming – Pushing the Limits", 1st Edition, Wiley India Pvt Ltd, 2014. ISBN-13: 978-8126547197.
8.	Bill Phillips, Chris Stewart and Kristin Marsicano, "Android Programming: The Big Nerd Ranch Guide", 4th Edition, Big Nerd Ranch Guides, 2019. ISBN-13: 978-0134706054

		C	O-PO Mappin	g		
PO& CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1:	3	2	_	3	3	-
CO2:	3	1	1	3	-	2
CO3:	3	2	3	3	3	1
CO4:	3	1	1	2	-	3
CO5:	3	2	2	3	3	3
Average:	3	1.6	1.75	2.8	3	2.25

Subject Code	Subject Name	Category	L	Т	P	C
IF24004	DEEP LEARNING	PEC	3	0	. 2	4

Course Objectives:

- Develop and Train Deep Neural Networks.
- Develop a CNN, R-CNN, Fast R-CNN, Faster-R-CNN, Mask-RCNN for detection and recognition
- Build and train RNNs, work with NLP and Word Embeddings
- The internal structure of LSTM and GRU and the differences between them
- The Auto Encoders for Image Processing

UNIT – I DEEP LEARNING CONCEPTS

6

Fundamentals about Deep Learning. Perception Learning Algorithms. Probabilistic modelling. Early Neural Networks. How Deep Learning different from Machine Learning. Scalars. Vectors. Matrixes, Higher Dimensional Tensors. Manipulating Tensors. Vector Data. Time Series Data. Image Data. Video Data.

UNIT – II NEURAL NETWORKS

9

About Neural Network. Building Blocks of Neural Network. Optimizers. Activation Functions. Loss Functions. Data Pre-processing for neural networks, Feature Engineering. Overfitting and Underfitting. Hyperparameters.

UNIT – III CONVOLUTIONAL NEURAL NETWORK

10

About CNN. Linear Time Invariant. Image Processing Filtering. Building a convolutional neural network. Input Layers, Convolution Layers. Pooling Layers. Dense Layers. Backpropagation Through the Convolutional Layer. Filters and Feature Maps. Backpropagation Through the Pooling Layers. Dropout Layers and Regularization. Batch Normalization. Various Activation Functions. Various Optimizers. LeNet, AlexNet, VGG16, ResNet. Transfer Learning with Image Data. Transfer Learning using Inception Oxford VGG Model, Google Inception Model, Microsoft ResNet Model. R CNN, Fast R-CNN, Faster R-CNN, Mask-RCNN, YOLO

UNIT – IV NATURAL LANGUAGE PROCESSING USING RNN

10

About NLP & its Toolkits. Language Modeling. Vector Space Model (VSM). Continuous Bag of Words (CBOW). Skip-Gram Model for Word Embedding. Part of Speech (PoS) Global Co occurrence Statistics—based Word Vectors. Transfer Learning. Word2Vec. Global Vectors for Word Representation GloVe. Backpropagation Through Time. Bidirectional RNNs (BRNN). Long Short Term Memory (LSTM). Bidirectional LSTM. Sequence-to-Sequence Models (Seq2Seq). Gated recurrent unit GRU.

UNIT – V DEEP REINFORCEMENT & UNSUPERVISED LEARNING

10

About Deep Reinforcement Learning. Q-Learning. Deep Q-Network (DQN). Policy Gradient Methods. Actor-Critic Algorithm. About Autoencoding. Convolutional Auto Encoding. Variational Auto Encoding. Generative Adversarial Networks. Autoencoders for Feature Extraction. Auto Encoders for Classification. Denoising Autoencoders. Sparse Autoencoders

Total Contact Hours =45

LIST	LIST OF EXPERIMENTS: Total hours			
1.	Feature Selection from Video and Image Data			
2.	2. Image and video recognition			
3.	3. Image Colorization			
4.	Aspect Oriented Topic Detection & Sentiment Analysis			
5.	Object Detection using Autoencoder			

HoD / BOS chairman

Principal

92

Course Outcomes:	Upon completion of this course, the students will be able to
CO1:	Feature Extraction from Image and Video Data
	Implement Image Segmentation and Instance Segmentation in Images
CO3:	Implement image recognition and image classification using a pretrained network (Transfer Learning)
CO4:	Traffic Information analysis using Twitter Data
CO5:	Autoencoder for Classification & Feature Extraction

TOTAL: 45+30=75 PERIODS

Refe	rence Books/Other Materials/Web Resources:
1.	Deep Learning A Practitioner's Approach Josh Patterson and Adam Gibson O'Reilly Media, Inc.2017
2.	Learn Keras for Deep Neural Networks, Jojo Moolayil, Apress, 2018
3.	Deep Learning Projects Using TensorFlow 2, Vinita Silaparasetty, Apress, 2020
4.	Deep Learning with Python, FRANÇOIS CHOLLET, MANNING SHELTER ISLAND,2017
5.	Pro Deep Learning with TensorFlow, Santanu Pattanayak, Apress, 2017

5	CO-PO Mapping					
PO& CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1:	2	2	-	3	3	3
CO2:	2	2	2	3	3	2
CO3:	2	2	2	3	2	3
CO4:	2	2	1	3	3	3
CO5:	2	2	-	3	2	2
Average:	2	. 2	1.6	3	2.6	2.6

HoD / BOS chairman

Subject Code	Subject Name	Category	L	T	P	C
CP24010	BLOCKCHAIN TECHNOLOGIES	PEC	3	0	2	4

Course Objectives:

- This course is intended to study the basics of Blockchain technology.
- During this course the learner will explore various aspects of Blockchain technology like application in various domains.
- By implementing, learners will have idea about private and public Blockchain, and smart contract.

UNIT - I INTRODUCTION OF CRYPTOGRAPHY AND BLOCKCHAIN

9

Introduction to Blockchain, Blockchain Technology Mechanisms & Networks, Blockchain Origins, Objective of Blockchain, Blockchain Challenges, Transactions and Blocks, P2P Systems, Keys as Identity, Digital Signatures, Hashing, and public key cryptosystems, private vs. public Blockchain.

UNIT – II BITCOIN AND CRYPTOCURRENCY

9

Introduction to Bitcoin, The Bitcoin Network, The Bitcoin Mining Process, Mining Developments, Bitcoin Wallets, Decentralization and Hard Forks, Ethereum Virtual Machine (EVM), Merkle Tree, Double-Spend Problem, Blockchain and Digital Currency, Transactional Blocks, Impact of Blockchain Technology on Cryptocurrency.

UNIT – III INTRODUCTION TO ETHEREUM

9

Introduction to Ethereum, Consensus Mechanisms, Metamask Setup, Ethereum Accounts, , Transactions, Receiving Ethers, Smart Contracts.

UNIT – IV INTRODUCTION TO HYPERLEDGER AND SOLIDITY PROGRAMMING

Introduction to Hyperledger, Distributed Ledger Technology & its Challenges, Hyperledger & Distributed Ledger Technology, Hyperledger Fabric, Hyperledger Composer. Solidity - Language of Smart Contracts, Installing Solidity & Ethereum Wallet, Basics of Solidity, Layout of a Solidity Source File & Structure of Smart Contracts, General Value Types.

UNIT - V BLOCKCHAIN APPLICATIONS

8

Internet of Things, Medical Record Management System, Domain Name Service and Future of Blockchain, Alt Coins.

SUPPLEMENTARY RESOURCES:

- NPTEL online course: https://nptel.ac.in/courses/106/104/106104220/#
- Udemy: https://www.udemy.com/course/build-your-blockchain-az/
- EDUXLABS Online training: https://eduxlabs.com/courses/blockchain-technology-training/?tab=tab-curriculum

Total Contact Hours =45

Create a Simple Blockchain in any suitable programming language. Use Geth to Implement Private Ethereum Block Chain. Build Hyperledger Fabric Client Application Build Hyperledger Fabric with Smart Contract. Create Case study of Block Chain being used in illegal activities in real world. Using Python Libraries to develop Block Chain Application.

TOTAL:75 PERIODS

HaD / Doc hairman

Principal

94

Course Outcomes:	Upon completion of this course, the students will be able to
CO1:	Understand and explore the working of Blockchain technology
CO2:	Analyze the working of Smart Contracts
	Understand and analyze the working of Hyperledger
CO4:	Apply the learning of solidity to build de-centralized apps on Ethereum
CO5:	Develop applications on Blockchain

Refe	rence Books/Other Materials/Web Resources:
1.	Imran Bashir, "Mastering Blockchain: Distributed Ledger Technology, Decentralization, and Smart
	Contracts Explained", Second Edition, Packt Publishing, 2018.
2.	Narayanan, J. Bonneau, E. Felten, A. Miller, S. Goldfeder, "Bitcoin and Cryptocurrency Technologies:
	A Comprehensive Introduction" Princeton University Press, 2016
3.	Antonopoulos, Mastering Bitcoin, O'Reilly Publishing, 2014
4.	Antonopoulos and G. Wood, "Mastering Ethereum: Building Smart Contracts and Dapps", O'Reilly
	Publishing, 2018.
5.	D. Drescher, Blockchain Basics. Apress, 2017.

			CO-PO Mappin	g		
PO& CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1:	2	1	3	2	2	3
CO2:	2	1	2	3	2	2
CO3:	2	1	3	1	2	1
CO4:	2	1	2	3	2	2
CO5:	-	-	-	-	-	-
Average:	2.00	1.00	2.50	2.25	2.00	2.00

HoD BOS Chairman

Subject Name	Category	L	T	P	C
OFTWARE DEVELOPMENT	PEC	3	0	2	4
	OFTWARE DEVELOPMENT	· · · · · · · · · · · · · · · · · · ·			

Course Objectives:

- To understand the architecture of embedded processor, microcontroller, and peripheral devices.
- To interface memory and peripherals with embedded systems.
- To study the embedded network environment.
- To understand challenges in Real time operating systems.
- To study, analyse and design applications on embedded systems.

UNIT – I EMBEDDED PROCESSORS

9+6

Embedded Computers – Characteristics of Embedded Computing Applications – Challenges in Embedded Computing System Design – Embedded System Design Process- Formalism for System Design – Structural Description – Behavioural Description – ARM Processor – Intel ATOM Processor.

UNIT – II EMBEDDED COMPUTING PLATFORM

9+6

CPU Bus Configuration – Memory Devices and Interfacing – Input/Output Devices and Interfacing – System Design – Development and Debugging – Emulator – Simulator – JTAG Design Example – Alarm Clock – Analysis and Optimization of Performance – Power and Program Size

UNIT – HI EMBEDDED NETWORK ENIVIRONMENT

9+6

Distributed Embedded Architecture – Hardware And Software Architectures – Networks for Embedded Systems – I2C – CAN Bus – SHARC Link Supports – Ethernet – Myrinet – Internet – Network-based Design – Communication Analysis – System Performance Analysis – Hardware Platform Design – Allocation and Scheduling – Design Example – Elevator Controller.

UNIT – IV REAL-TIME CHARACTERISTICS

9+6

Clock Driven Approach – Weighted Round Robin Approach – Priority Driven Approach – Dynamic versus Static Systems – Effective Release Times and Deadlines – Optimality of the Earliest Deadline First (EDF) Algorithm – Challenges in Validating Timing Constraints in Priority Driven Systems – Off-Line versus On-Line Scheduling.

UNIT – V SYSTEM DESIGN TECHNIQUES

9+6

Design Methodologies – Requirement Analysis – Specification – System Analysis and Architecture Design – Quality Assurance – Design Examples – Telephone PBX – Ink jet printer – Personal Digital Assistants – Set-Top Boxes.

SUGGESTED ACTIVITIES:

- 1. Study of ARM evaluation system
- 2. Interfacing ADC and DAC.
- 3. Interfacing LED and PWM.
- 4. Interfacing real time clock and serial port.
- 5. Interfacing keyboard and LCD.
- 6. Interfacing EPROM and interrupt.
- 7. Principles of Mailbox.
- 8. Interrupt performance characteristics of ARM and FPGA.
- 9. Flashing of LEDS.
- 10. Interfacing stepper motor and temperature sensor.

Total Contact Hours =75

HoD / BOS Chairman

~01

96

Course Outcomes:	Upon completion of this course, the students will be able to					
CO1:	Understand different architectures of embedded processor, microcontroller and					
	peripheral devices. Interface memory and peripherals with embedded systems.					
CO2:	Interface memory and peripherals with embedded systems.					
CO3:	Work with embedded network environment.					
CO4:	Understand challenges in Real time operating systems.					
CO5:	Design and ananalyse applications on embedded systems.					

Refer	ence Books/Other Materials/Web Resources:
1.	Adrian McEwen, Hakim Cassimally, "Designing the Internet of Things" Wiley Publication,
	First edition, 2013
2.	Andrew N Sloss, D. Symes, C. Wright, Arm system developers guide, Morgan Kauffman/Elsevier,
	2006.
3.	Arshdeep Bahga, Vijay Madisetti, "Internet of Things: A Hands-on-Approach" VPT First Edition,
	2014
4.	C. M. Krishna and K. G. Shin, "Real-Time Systems, McGraw-Hill, 1997
5.	Frank Vahid and Tony Givargis, "Embedded System Design: A Unified Hardware/Software
-	Introduction, John Wiley & Sons.1999
6.	Jane.W.S. Liu, "Real-Time systems, Pearson Education Asia,2000
7.	Michael J. Pont, "Embedded C, Pearson Education, 2007.
	A LANG III C. Dising Grand-Majori IITha AVD Migragantroller and Embedded
8.	Muhammad Ali Mazidi, SarmadNaimi, SepehrNaimi, "The AVR Microcontroller and Embedded
	Systems: Using Assembly and C" Pearson Education, First edition, 2014
9.	Steve Heath, "Embedded System Design, Elsevier, 2005
10.	Wayne Wolf, "Computers as Components: Principles of Embedded Computer System Design, Elsevier,
	2006.

		(CO-PO Mappin	ıg		
PO& CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1:	2	-	3	2	-	-
CO2:	-	-	-	3	3	2
CO3:	-	1	2	1	2	2
CO4:	2	2	-	-	3	_
CO5:	3	3	1	-	1	_
Average:	1.3	2	2	2	2.25	2

HoD BOS Chairman

Subject Code	Subject Name	Category	L	T	P	C
IF24005	FULL STACK WEB APPLICATION DEVELOPMENT	PEC	3	0	2	4
Course Objectives:		100				
Develop Type	eScript Application					
 Develop Sing 	tle Page Application (SPA)					
Able to comm	nunicate with a server over the HTTP protocol					
Learning all t	he tools need to start building applications with Nod	le.js				

UNIT – I FUNDAMENTALS & TYPESCRIPT LANGUAGE

Implement the Full Stack Development using MEAN Stack

10

Server-Side Web Applications. Client-Side Web Applications. Single Page Application. About TypeScript. Creating TypeScript Projects. TypeScript Data Types. Variables. Expression and Operators. Functions. OOP in Typescript. Interfaces. Generics. Modules. Enums. Decorators. Enums. Iterators. Generators.

UNIT – II ANGULAR

10

About Angular CLI. Creating an Angular Project. Components. Components Interaction. Dynamic Components. Angular Elements. Angular Forms. Template Driven Forms. Property, Style, Class and Event Binding. Two way Bindings. Reactive Forms. Form Group. Form Controls. About Angular Router. Router Configuration. Router State. Navigation Pages. Router Link. Query Parameters. URL matching. Matching Strategies. Services. Dependency Injection. HttpClient. Read Data from the Server. CRUD Operations. Http Header Operations. Intercepting requests and responses.

UNIT – III NODE.js

10

About Node.js. Configuring Node.js environment. Node Package Manager NPM. Modules. Asynchronous Programming. Call Stack and Event Loop. Callback functions. Callback errors. Abstracting callbacks. Chaining callbacks. File System. Synchronous vs. asynchronous I/O. Path and directory operations. File Handle. File Synchronous API. File Asynchronous API. File Callback API. Timers. Scheduling Timers. Timers Promises API. Node.js Events. Event Emitter. Event Target and Event API. Buffers. Buffers and TypedArrays. Buffers and iteration. Using buffers for binary data. Flowing vs. non-flowing streams. JSON.

UNIT – IV EXPRESS.Js

7

Express.js. How Express.js Works. Configuring Express.js App Settings. Defining Routes. Starting the App. Express.js Application Structure. Configuration, Settings. Middleware. body-parser. cookie-parser. express-session. response-time. Template Engine. Jade. EJS. Parameters. Routing. router.route(path). Router Class. Request Object. Response Object. Error Handling. RESTful.

UNIT – V MONGODB

8

Introduction to MongoDB. Documents. Collections. Subcollections. Database. Data Types. Dates. Arrays. Embedded Documents. CRUD Operations. Batch Insert. Insert Validation. Querying The Documents. Cursors. Indexing. Unique Indexes. Sparse Indexes. Special Index and Collection Types. Full-Text Indexes. Geospatial Indexing. Aggregation framework.

Total Contact Hours =45

LIST	T OF EXPERIMENTS:	TOTAL=30
1.	Accessing the Weather API from Angular	
2.	Accessing the Stock Market API from Angular	
3.	Call the Web Services of Express.js From Angular	
4.	Read the data in Node.js from MongoDB	
5.	CRUD operation in MongoDB using Angular	

HoD / BOS Chairman

Course Outcomes:	Upon completion of this course, the students will be able to
CO1:	Develop basic programming skills using Javascript
CO2:	Implement a front-end web application using Angular
CO3:	Will be able to create modules to organise the server
	Build RESTful APIs with Node, Express and MongoDB with confidence.
CO5:	Will learn to Store complex, relational data in MongoDB using Mongoose

TOTAL:45+30=75 PERIODS

Refe	rence Books/Other Materials/Web Resources:
1.	Adam Freeman, Essential TypeScript, Apress, 2019
2.	Mark Clow, Angular Projects, Apress, 2018
3.	Alex R. Young, Marc Harter, Node. js in Practice, Manning Publication, 2014
4.	Pro Express.js, Azat Mardan, Apress, 2015
5.	MongoDB in Action, Kyle Banker, Peter Bakkum, Shaun Verch, Douglas Garrett, Tim Hawkins, Manning Publication, Second edition, 2016

			O-PO Mappin	g		
PO& CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1:	-	_	2	3	3	3
CO2:	-	-	2	3	3	3
CO3:	2	-	1	-	3	3
CO4:	2	-	2	-	3	3
CO5:	3	3	-	-	3	3
Average:	2.33	3	1.75	3	3	3

HoD BOS Chairman

Subject Code	Subject Name	Category	L 3	T 0	P 2	C 4
CP24011	BIO INFORMATICS	PEC				
Course Objectives:			-			
• Exposed to the ne	ed for Bioinformatics technologies					
• Be familiar with t	he modeling techniques					
Learn microarray	analysis					
 Exposed to Patter 	n Matching and Visualization					
 To know about M 	icroarray Analysis					

UNIT – I INTRODUCTION

Q

Need for Bioinformatics technologies – Overview of Bioinformatics technologies Structural bioinformatics – Data format and processing – Secondary resources and applications – Role of Structural bioinformatics – Biological Data Integration System.

UNIT – II DATAWAREHOUSING AND DATAMINING IN BIOINFORMATICS

0

Bioinformatics data – Data warehousing architecture – data quality – Biomedical data analysis – DNA data analysis – Protein data analysis – Machine learning – Neural network architecture and applications in bioinformatics.

UNIT – III MODELING FOR BIOINFORMATICS

9

Hidden Markov modeling for biological data analysis – Sequence identification Sequence classification – multiple alignment generation – Comparative modeling –Protein modeling – genomic modeling – Probabilistic modeling – Bayesian networks – Boolean networks – Molecular modeling – Computer programs for molecular modeling.

UNIT – IV PATTERN MATCHING AND VISUALIZATION

9

Gene regulation – motif recognition – motif detection – strategies for motif detection – Visualization – Fractal analysis – DNA walk models – one dimension – two dimension – higher dimension – Game representation of biological sequences – DNA, Protein, Amino acid sequences

UNIT – V MICROARRAY ANALYSIS

9

Microarray technology for genome expression study – image analysis for data extraction preprocessing – segmentation – gridding – spot extraction – normalization, filtering – cluster analysis – gene network analysis – Compared Evaluation of Scientific Data Management Systems – Cost Matrix – Evaluation model – Benchmark – Tradeoffs.

Total Contact Hours :45

LIST OF EXPERIMENTS Manipulating DNA strings 2. Use Protein Data Bank to visualize and Analyze the Proteins from protein database Explore the Human Genome with the SciPy Stack 3. 4. Hidden Markov Model for Biological Sequence Molecular Modeling using MMTK package Sequence Alignment using Biopython, Pairwise and multiple sequence alignment using ClustalW and 6. **BLAST** 7. Simple generation and manipulation of genome graphs 8. DNA data handling using Biopython 9. Chaos Game Representation of a genetic sequence

10. Visualize the microarray data using Heatmap

Total Contact Hours:30

HoD / BOS Chairman

D. in of

100

Course Outcomes:	Upon completion of the course students should be able to:
CO1:	Understand the different Data formats
CO2:	Develop machine learning algorithms.
	Develop models for biological data.
CO4:	Apply pattern matching techniques to bioinformatics data – protein data genomic data.
CO5:	Apply micro array technology for genomic expression study

TOTAL:45+30=75 PERIODS

Re	terence Books/Other Materials/ web Resources:
1.	Yi-Ping Phoebe Chen (Ed), "BioInformatics Technologies", First Indian Reprint, Springer Verlag, 2007.
2.	Bryan Bergeron, "Bio Informatics Computing", Second Edition, Pearson Education, 2015.

3. Arthur M Lesk, "Introduction to Bioinformatics", Second Edition, Oxford University Press, 2019

		C	O-PO Mappin	g		
PO& CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1:	1	1	-	-	-	3
CO2:	1	1 .	2	2	1	2
CO3:	1	2	1	1	3	3
CO4:	1	2	2	2	2	2
CO5:	1	2	1	-	2	3
Average:	1.00	1.60	1.50	1.67	2.00	2.60

HoD BOS Chairman

Subject Code	Subject Name	Category	L	T 0	P 2	c
MP24007	CYBER PHYSICAL SYSTEMS	PEC	3			4
Course Objectives:			1	1	_	
To learn abo	ut the principles of cyber-physical systems					
To familiariz	te with the basic requirements of CPS.					
To know abo	out CPS models					
To facilitate	the students to understand the CPS foundations					
To make the	students explore the applications and platforms.					_

UNIT – I	INTRODUCTION TO CYBER-PHYSICAL SYST	EMS	6
Cyber-Physical	Systems(CPS)-Emergence of CPS, Key Features of C	yber-Physical Systems., CPS I	Privers-
Synchronous N	Iodel: Reactive Components, Properties of Componen	ts, Composing Components, D	esigns-
Asynchronous	Model of CPS: Processes, Design Primitives, Coordina	tion Protocols	
UNIT – II	CPS - REQUIREMENTS		12
Safety Specific	ations: Specifications, Verifying Invariants, Enumerative	ve Search, Symbolic Search- L	iveness
Requirements:	Temporal Logic, Model Checking, Proving Liveness		
UNIT – III	CPS MODELS		9
Dynamical Sys	stems: Continuous, Linear Systems-Time Models, Lin	near Systems, Designing Cont	rollers,
Analysis Techn	iques- Timed Model: Processes, Protocols, Automata-	Hybrid Dynamical Models	
UNIT – IV	CPS FOUNDATIONS		9
Symbolic Syntl	nesis for CPS- Security in CPS-Synchronization of CPS	-Real-Time Scheduling for CP	S
UNIT – V	APPLICATIONS AND PLATFORMS	Ü	9
Medical CPS-	CPS Built on Wireless Sensor Networks- CyberSim U	ser Interface- iClebo Kobuki -	iRobot
	- Cybersim- Matlab toolboxes - Simulink.		
		Total Contact Hou	ırs :45

LIST	OF EXPERIMENTS
1.	Installation of Xilinx SDK, LABVIEW, MatLab and Cybersim
2.	Installation of, myRIO iRobot Create Wiring, Kobuki Wiring
3.	CPS DEsign with the iRobot Create
4.	CPS Design with the Kobuki.
5.	Write a program in MATLAB to implement open loop system stability.
6.	Write a program in MATLAB to implement timed automation.
	Total Contact Hours: 45+30=75

Course Outcomes:	Upon completion of the course students should be able to:
CO1:	Explain the core principles behind CPS
CO2:	Discuss the requirements of CPS.
CO3:	Explain the various models of CPS
CO4:	Describe the foundations of CPS.
CO5:	Use the various platforms to implement the CPS

Refer	ence Books/Other Materials/Web Resources:
1.	Raj Rajkumar, Dionisio De Niz, and Mark Klein, Cyber-Physical Systems, Addison Wesley
	Professional, 2016
2.	Rajeev Alur, Principles of Cyber-Physical Systems, MIT Press, 2015.
3.	Lee, Edward Ashford, and Sanjit Arunkumar Seshia. Introduction to embedded systems: A cyber physical systems approach. 2nd Edition, 2017
4.	André Platzer, Logical Analysis of Hybrid Systems: Proving Theorems for Complex
	Dynamics., Springer, 2010. 426 pages, ISBN 978-3-642-14508-7.
5.	Jean J. Labrosse, Embedded Systems Building Blocks: Complete and Ready-To-Use Modules in
	C, The publisher, Paul Temme, 2011
6.	Jensen, Jeff, Lee, Edward, A Seshia, Sanjit, An Introductory Lab in Embedded and Cyber
	Physical Systems, http://leeseshia.org/lab, 2014.
7.	Documentation KOBUKI (yujinrobot.com)

			CO-PO Mappi	ng		
PO&	P	PO2	PO3	PO4	PO5	PO6
CO1:	3	3	3	-	1	-
CO2:	2	2	2	-	1 1	-
CO3:	-		3	1	_	1
CO4:	-	-	3	1	-	1
CO5:	2	_	2	3	3	3
Average:	2	2.5	2.6	1.7	1.7	1.7

HoD BOS Chairman

Subject Code	Subject Name	Category	L	Т	P	C
AX24001	ENGLISH FOR RESEARCH PAPER WRITING	AC	2	0	0	0
Course Objective	S:					
Teach how	to improve writing skills and level of readability					
Tell about v	what to write in each section					
Summarize	the skills needed when writing a Title	a				
Infer the sk	ills needed when writing the Conclusion					
Ensure the	quality of paper at very first-time submission					

UNIT – I	INTRODUCTION TO RESEARCH PAPER WRIT	TING 6	5
Planning and P	reparation, Word Order, Breaking up long sentences, S	Structuring Paragraphs and Sente	nces,
Being Concise	and Removing Redundancy, Avoiding Ambiguity and	Vagueness	
UNIT – II	PRESENTATION SKILLS	6	5
Clarifying Who	Did What, Highlighting Your Findings, Hedging and	Criticizing, Paraphrasing and	
Plagiarism, Sec	ctions of a Paper, Abstracts, Introduction		
UNIT – III	TITLE WRITING SKILLS	6	5
needed when w	needed when writing a Title, key skills are needed when writing an Introduction, skills needed when writing a Resision, Conclusions, The Final Check	view of the Literature, Methods,	e
	RESULT WRITING SKILLS	6	
Skills are need	ed when writing the Methods, skills needed when writing	g the Results, skills are needed w	vhen
UNIT – V	VERIFICATION SKILLS	6	
Useful phrases submission	, checking Plagiarism, how to ensure paper is as good as	s it could possibly be the first-tin	ne
		Total Contact Hour	s :30

	Upon completion of the course students should be able to:
CO1:	Understand that how to improve your writing skills and level of readability
CO2:	Learn about what to write in each section
CO3:	Understand the skills needed when writing a Title
CO4:	Understand the skills needed when writing the Conclusion
CO5:	Ensure the good quality of paper at very first-time submission

Refer	ence Books/Other Materials/Web Resources:
	Adrian Wallwork, English for Writing Research Papers, Springer New York Dordrecht Heidelberg
1.	London, 2011
2.	Day R How to Write and Publish a Scientific Paper, Cambridge University Press 2006
3.	Goldbort R Writing for Science, Yale University Press (available on Google Books) 2006
4.	Highman N, Handbook of Writing for the Mathematical Sciences, SIAM. Highman's book
	1998.

		(CO-PO Mappi	ng		
PO&	P	PO2	PO3	PO4	PO5	PO6
CO1:	3	3	2	3	2	-
CO2:	3	3	2	3	2	
CO3:	3	3	2	3	2	_
CO4:	3	3	2	3	2	-
CO5:	3	3	2	3	2	-
Average:	3	3	2	3	2	-

Subject Code	Subject Name	Category	L	T	P	C
AX24002	DISASTER MANAGEMENT	AC	2	0	0	0

Course Objectives:

- Summarize basics of disaster
- Explain a critical understanding of key concepts in disaster risk reduction and humanitarian response.
- Illustrate disaster risk reduction and humanitarian response policy and practice from multiple perspectives.
- Describe an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations.
- Develop the strengths and weaknesses of disaster management approaches

UNIT – I INTRODUCTION

6

Disaster: Definition, Factors and Significance; Difference between Hazard And Disaster; Natural and Manmade Disasters: Difference, Nature, Types and Magnitude.

UNIT – II REPERCUSSIONS OF DISASTERS AND HAZARDS

6

Economic Damage, Loss of Human and Animal Life, Destruction Of Ecosystem. Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts And Famines, Landslides And Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks And Spills, Outbreaks Of Disease And Epidemics, War And Conflicts.

UNIT – III DISASTER PRONE AREAS IN INDIA

6

Study of Seismic Zones; Areas Prone To Floods and Droughts, Landslides And Avalanches; Areas Prone To Cyclonic and Coastal Hazards with Special Reference To Tsunami; Post-Disaster Diseases and Epidemics

UNIT – IV DISASTER PREPAREDNESS AND MANAGEMENT

Preparedness: Monitoring Of Phenomena Triggering a Disaster or Hazard; Evaluation of Risk: Application
UNIT - V RISK ASSESSMENT 6

Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's

Total Contact Hours:30

Course Outcomes:	Upon completion of the course students should be able to:		
CO1:	CO1: Ability to summarize basics of disaster		
CO2:	Ability to explain a critical understanding of key concepts in disaster risk reduction		
	and humanitarian response.		
CO3:	Ability to illustrate disaster risk reduction and humanitarian response policy and		
	practice from multiple perspectives.		
CO4:	Ability to describe an understanding of standards of humanitarian response and		
	practical relevance in specific types of disasters and conflict situations.		
CO5:	Ability to develop the strengths and weaknesses of disaster management		
	approaches		

Reference Books/Other Materials/Web Resources:

- 1. Goel S. L., Disaster Administration And Management Text And Case Studies", Deep & Deep Publication Pvt. Ltd., New Delhi, 2009.
- 2. NishithaRai, Singh AK, "Disaster Management in India: Perspectives, issues and strategies "New Royal book Company, 2007.

HoD / BOS Chairman

106

3. Sahni, Pradeep Et.Al.," Disaster Mitigation Experiences And Reflections", Prentice Hall OfIndia, New Delhi,2001.

			CO-PO Mappi	ing		
PO&	P	PO2	PO3	PO4	PO5	PO6
CO1:	3	3	2	3	-	-
CO2:	3	3	3	3	_	_
CO3:	3	3	3	3	-	-
CO4:	3	3	2	3	-	_
CO5:	3	3	2	3		-
Average:	3	3	3	3	-	-

HoD / BOS Chairman

Subject Code	Subject Name	Category	L	Т	P	С
AX24003	CONSTITUTION OF INDIA	AC	2	0	0	0

Course Objectives:

- Understand the premises informing the twin themes of liberty and freedom from a civil rights
- To address the growth of Indian opinion regarding modern Indian intellectuals' constitutional
- Role and entitlement to civil and economic rights as well as the emergence of nationhood in the early years of Indian nationalism.
- To address the role of socialism in India after the commencement of the Bolshevik Revolution 1917 And its impact on the initial drafting of the Indian Constitution.

HISTORY OF MAKING OF THE INDIAN CONSTITUTION History, Drafting Committee, (Composition & Working) UNIT - II PHILOSOPHY OF THE INDIAN CONSTITUTION Preamble, Salient Features UNIT - III CONTOURS OF CONSTITUTIONAL RIGHTS AND DUTIES

Fundamental Rights, Right to Equality, Right to Freedom, Right against Exploitation, Right to Freedom of Religion, Cultural and Educational Rights, Right to Constitutional Remedies, Directive Principles of State Policy, Fundamental Duties.

UNIT - IV ORGANS OF GOVERNANCE

Parliament, Composition, Qualifications and Disqualifications, Powers and Functions, Executive, President, Governor, Council of Ministers, Judiciary, Appointment and Transfer of Judges, Qualifications, Powers and Functions.

UNIT - V LOCAL ADMINISTRATION

District's Administration head: Role and Importance, Municipalities: Introduction, Mayor and role of Elected Representative, CEO, Municipal Corporation. Pachayati raj: Introduction, PRI: Zila Panchayat. Elected officials and their roles, CEO Zila Pachayat: Position and role. Block level: Organizational Hierarchy(Different departments), Village level:Role of Elected and Appointed officials, Importance of grass root democracy.

UNIT - VI **ELECTION COMMISSION**

Election Commission: Role and Functioning. Chief Election Commissioner and Election Commissioners -Institute and Bodies for the welfare of SC/ST/OBC and women.

Total Contact Hours:30

Course Outcomes:	Upon completion of the course students should be able to:
CO1:	Discuss the growth of the demand for civil rights in India for the bulk of Indians
	before the arrival of Gandhi in Indian politics.
CO2:	Discuss the intellectual origins of the framework of argument that informed the
	conceptualization of social reforms leading to revolution in India.
CO3:	Discuss the circumstances surrounding the foundation of the Congress Socialist
	Party[CSP] under the leadership of Jawaharlal Nehru and the eventual failure of
	the proposal of direct elections through adult suffrage in the Indian Constitution.
CO4:	Discuss the passage of the Hindu Code Bill of 1956.

Reference Books/Other Materials/Web Resources:					
1.	The Constitution of India,1950(Bare Act),Government Publication.				
2.	Dr.S.N.Busi, Dr.B. R.Ambedkar framing of Indian Constitution, 1st Edition, 2015.				
3.	M.P. Jain, Indian Constitution Law, 7th Edn., LexisNexis,2014.				
4.	D.D. Basu, Introduction to the Constitution of India, LexisNexis, 2015.				

			CO-PO Mappi	ing		11
PO&	P	PO2	PO3	PO4	PO5	PO6
CO1:	call .	-	-	-	-	2
CO2:	_	-	-	-	-	3
CO3:	-	_	-	-	-	3
CO4:	-	-	-	-	-	3
CO5:	-	-	-	-	-	3
Average:	-	-	-	-	-	3

Subject Code		Subject Name	Category	L	Т	P	C
	AX24004	நற்றமிழ் இலக்கியம்	AC	2	0	0	0

UNIT – I	பக இலக்கியம்	6
1. தமிழின்	துவக்க நூல் தொல்காப்பியம்	
	எழுத்து, சொல், பொருள்	
2. அகனாஜ	நாறு	
	இயற்கை இன்னிசை அரங்கம்	
	ப்பாட்டின் மலர்காட்சி	
4. புறனான		
	போரை நிறுத்திய ஒளவையார்	
	றநெறித் தமிழ்	6
. அறநெறி வ	குத்த திருவள்ளுவர்	
அறம்	வலியுறுத்தல், அன்புடைமை, ஒப்புறவு அறிதல், ஈகை, புகழ்	
	லகள் – இலக்கிய மருந்து	
	தி, சிறுபஞ்சமூலம், திரிகடுகம்,ஆசாரக்கோவை (தூய்மையை	
	புறுத்தும் நூல் ஆட்டைக் கடல்களைக்குக்	6
1 62	ரட்டைக் காப்பியங்கள்	0
. கண்ணகிய	ाळा प्राप्ता भारता है। सम्बद्धाः	
₩160L	பதிகார வழக்குரை காதை	
சமூகரைக	வ இலக்கியம் மணிமேகலை றக்கோட்டம் அறக்கோட்டமாகிய காதை	
	ருள்நறித் தமிழ்	6
. சிறுபாணா		U
	றது பெண்ட லைக்குத் தேர் கொடுத்து, பேகன் மயிலுக்குப் பொர்வை கொடுத்து,	
பாரா மூல வகியமான் எை	வைக்கு நெல்லிக்கனி கொடுத்தது, அரசர் பண்புகள்	
் நற்றிணை	30.020.00 0.1900.00.00.00.00.00.00.00.00.00.00.00.00.	
	ரக்குரிய புன்னை சிறப்பு	
. திருமந்திரப		
இயமம் ந	பியமம் விதிகள்	
	லயை நிறுவிய வள்ளலார்	
. புறனானுற		
	வள்ளலானான்	
. அக்நொனூ		
நற்றிணை- !		
கலித்ததொ	கை - யானை, புறா	
ஐந்திணை –	மான	
ஆகாட	வை பற்றிய செய்திகள்	
NIT – V D	_இ வத்தியம்	6
. உரைநடை		
தமிழின் முத	ல் புதினம்	
தமிழின் முத	ல் சிறுகதை	
கட்டுரை இ	ுக்கியம்	
பயண இலக்	கியம்	
நாடகம்		
. நொட்டுவி	ந்தலை போராட்டமும் தமிழ் இலக்கியமும்	
D (DOC CL.	110	A sol

சுமுதாய விடுதலையும் தமிழ் இலக்கியமும் பெண் விடுதலையும் விளிம்பு நிலையினரின் மேம்பாட்டில் தமிழ் இலக்கியமும் அறிவியல் தமிழ் இகணயத்தில் தமிழ் சுற்றுச்சூழல் மேம்பாட்டில் தமிழ் இலக்கியமும்

Total Contact Hours:30

Refer	rence Books/Other Materials/Web Resources:
1.	Tamil Virtual University
2.	Tamil Wikipedia
3.	thamilvalarchithurai.com
4.	அறிவியல் களஞ்சியம்

HoD / BOS Chairman

Subject Code	Subject Name	Category	L	Т	P	C
MU24002	MIXED REALITY	PEC	3	0	2	4

Course Objectives:

- To study about Fundamental Concept and Components of Virtual Reality
- To study about Interactive Techniques in Virtual Reality
- To study about Visual Computation in Virtual Reality
- To study about Augmented and Mixed Reality and Its Applications
- To know about I/O Interfaces and its functions.

UNIT - I INTRODUCTION TO VIRTUAL REALITY

0

Introduction, Fundamental Concept and Components of Virtual Reality. Primary Features and Present Development on Virtual Reality. Computer graphics, Real time computer graphics, Flight Simulation, Virtual environment requirement, benefits of virtual reality, Historical development of VR, Scientific Landmark 3D Computer Graphics: Introduction, The Virtual world space, positioning the virtual observer, the perspective projection, human vision, stereo perspective projection, 3D clipping, Colour theory, Simple 3D modelling, Illumination models, Reflection models, Shading algorithms, Radiosity, Hidden Surface Removal, Realism Stereographic image.

UNIT – II INTERACTIVE TECHNIQUES IN VIRTUAL REALITY

9

Introduction, from 2D to 3D, 3D spaces curves, 3D boundary representation Geometrical Transformations: Introduction, Frames of reference, Modeling transformations, Instances, Picking, Flying, Scaling the VE, Collision detection Generic VR system: Introduction, Virtual environment, Computer environment, VR technology, Model of interaction, VR Systems.

UNIT - III VISUAL COMPUTATION IN VIRTUAL REALITY

9

Animating the Virtual Environment: Introduction, The dynamics of numbers, Linear and Nonlinear interpolation, the animation of objects, linear and non-linear translation, shape & object inbetweening, free from deformation, particle system. Physical Simulation: Introduction, Objects falling in a gravitational field, Rotating wheels, Elastic collisions, projectiles, simple pendulum, springs, Flight dynamics of an aircraft.

UNIT - IV | AUGMENTED AND MIXED REALITY

9

Taxonomy, technology and features of augmented reality, difference between AR and VR, Challenges with AR, AR systems and functionality, Augmented reality methods, visualization techniques for augmented reality, wireless displays in educational augmented reality applications, mobile projection interfaces, markerless tracking for augmented reality, enhancing interactivity in AR environments, evaluating AR systems

UNIT - V I/O INTERFACE IN VR & APPLICATION OF VR

9

Human factors: Introduction, the eye, the ear, the somatic senses. VR Hardware: Introduction, sensor hardware, Head-coupled displays, Acoustic hardware, Integrated VR systems. VR Software: Introduction, Modeling virtual world, Physical simulation, VR toolkits, Introduction to 92 VRML, Input -- Tracker, Sensor, Digitalglobe, Movement Capture, Video-based Input, 3D Menus & 3DScanner etc. Output -- Visual /Auditory / Haptic Devices. VR Technology in Film & TV Production. VR Technology in Physical Exercises and Games. Demonstration of Digital Entertainment by VR

Total Contact Hours :45

LIST OF EXPERIMENTS

1. Study of tools like Unity, Maya, 3DS MAX, AR toolkit, Vuforia and Blender.

HoD / BOS Chairman

Principal

112

2.	Use the primitive objects and apply various projection methods by handling the camera
3.	Download objects from asset stores and apply various lighting and shading effects.
4.	Model three dimensional objects using various modeling techniques and apply textures over them.
5.	Create three dimensional realistic scenes and develop simple virtual reality enabled mobile applications which have limited interactivity.
6.	Add audio and text special effects to the developed application
7.	Develop VR enabled applications using motion trackers and sensors incorporating full haptic interactivity.
8.	Develop AR enabled applications with interactivity like E learning environment, Virtual walkthroughs and visualization of historic places.
9.	Develop MR enabled simple applications like human anatomy visualization, DNA/RNA structure visualization and surgery simulation.
10.	Develop simple MR enabled gaming applications
	Total Contact Hours: 45+30=75

Course Outcomes:	Upon completion of the course students should be able to:
CO1:	Understand the Fundamental Concept and Components of Virtual Reality
CO2:	Able to know the Interactive Techniques in Virtual Reality
	Can know about Visual Computation in Virtual Reality
CO4:	Able to know the concepts of Augmented and Mixed Reality and Its Applications
	Know about I/O Interfaces and its functions

Refe	rence Books/Other Materials/Web Resources:
1.	Burdea, G. C. and P. Coffet. Virtual Reality Technology, Second Edition. Wiley-IEEE Press, 2003/2006.
2.	Alan B. Craig, Understanding Augmented Reality, Concepts and Applications, Morgan
	Kaufmann, First Edition 2013.
3.	Alan Craig, William Sherman and Jeffrey Will, Developing Virtual Reality Applications, Foundations
	of Effective Design, Morgan Kaufmann, 2009.
4.	John Vince, "Virtual Reality Systems", Pearson Education Asia, 2007.
5.	Adams, "Visualizations of Virtual Reality", Tata McGraw Hill, 2000.
6.	Grigore C. Burdea, Philippe Coiffet, "Virtual Reality Technology", Wiley Inter Science, 2nd Edition,
	2006.
7.	William R. Sherman, Alan B. Craig, "Understanding Virtual Reality: Interface, Application and
	Design", Morgan Kaufmann, 2008

CO-PO Mapping								
PO& CO	PO1	PO2	PO3	PO4	PO5	PO6		
CO1:	3	1	3	1	11	-		
CO2:	3	-	3	-	11	_		
CO3:	3	1	-	-	1	-		
CO4:	-	_	-	-	1	-		
CO5:	-	1	3	-	-	2		
Average:	3	1	3	1	1	2		

Subject Code	Subject Name	Category	L	T	P	C
OME24001	VIBRATION AND NOISE CONTROL STRATEGIES	OEC	3	0	0	3
Course Objective:						
To appreciate	the basic concepts of vibration in damped and unda	mped systems				

- To appreciate the basic concepts of noise, its effect on hearing and
- To use the instruments for measuring and analyzing the vibration levels in a body To use the instruments for measuring and analyzing the noise levels in a system
- To learn the standards of vibration and noise levels and their control techniques

BASICS OF VIBRATION UNIT - I

Introduction - Sources and causes of Vibration-Mathematical Models - Displacement, velocity and Acceleration - Classification of vibration: free and forced vibration, undamped and damped vibration, linear and non-linear vibration - Single Degree Freedom Systems - Vibration isolation - Determination of natural frequencies

BASICS OF NOISE UNIT - II

Introduction - Anatomy of human ear - Mechanism of hearing - Amplitude, frequency, wavelength and sound pressure level - Relationship between sound power, sound intensity and sound pressure level - Addition, subtraction and averaging decibel levels - sound spectra -Types of sound fields - Octave band analysis -Loudness.

INSTRUMENTATION FOR VIBRATION MEASUREMENT UNIT - III

Experimental Methods in Vibration Analysis- Vibration Measuring Instruments - Selection of Sensors Accelerometer Mountings - Vibration Exciters - Mechanical, Hydraulic, Electromagnetic and Electrodynamics - Frequency Measuring Instruments -. System Identification from Frequency Response Testing for resonance and mode shapes

INSTRUMENTATION FOR NOISE MEASUREMENT AND ANALYSIS UNIT - IV

Microphones - Weighting networks - Sound Level meters, its classes and calibration - Noise measurements using sound level meters - Data Loggers - Sound exposure meters - Recording of noise - Spectrum analyser -Intensity meters - Energy density sensors - Sound source localization.

UNIT - V

METHODS OF VIBRATION CONTROL, SOURCES OF NOISE AND ITS CONTROL

Specification of Vibration Limits - Vibration severity standards - Vibration as condition Monitoring Tool -Case Studies - Vibration Isolation methods - Dynamic Vibration Absorber - Need for Balancing - Static and Dynamic Balancing machines - Field balancing - Major sources of noise - Noise survey techniques Measurement technique for vehicular noise - Road vehicles Noise standard - Noise due to construction equipment and domestic appliances - Industrial noise sources and its strategies - Noise control at the source - Noise control along the path - Acoustic Barriers - Noise control at the receiver -- Sound transmission through barriers - Noise reduction Vs Transmission loss - Enclosures

Total Contact Hours: 45

Upon completion of the course students should be able to: **Course Outcomes:**

CO1: apply the basic concepts of vibration in damped and undamped systems

114

HoD / BOS Chairman

CO2:	apply the basic concepts of noise and to understand its effects on systems
CO3:	select the instruments required for vibration measurement and its analysis
CO4:	select the instruments required for noise measurement and its analysis.
CO5:	recognize the noise sources and to control the vibration levels in a body and to control
	noise under different strategies.

Refe	rences:
1.	Singiresu S. Rao, "Mechanical Vibrations", Pearson Education Incorporated, 2017.
2.	Graham Kelly. Sand Shashidhar K. Kudari, "Mechanical Vibrations", Tata McGraw -Hill
	Publishing Com. Ltd., 2007.
3.	Ramamurti. V, "Mechanical Vibration Practice with Basic Theory", Narosa Publishing House, 2000.
4.	William T. Thomson, "Theory of Vibration with Applications", Taylor & Francis, 2003.
5.	G.K. Grover, "Mechanical Vibrations", Nem Chand and Bros., Roorkee, 2014.
6.	A.G. Ambekar, "Mechanical Vibrations and Noise Engineering", PHI Learning Pvt. Ltd., 2014.
7.	David A. Bies and Colin H. Hansen, "Engineering Noise Control - Theory and Practice", Spon Press,
	London and New York, 2009.

		(CO-PO Mappin	g		
PO / CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1:	3	-	3	3	2	2
CO2:	3	_	3	3	2	2
CO3:	3	-	3	3	2	2
CO4:	3	-	3	3	2	2
CO5:	3	-	3	3	2	2
Average:	3	-	3	3	2	2

Subject Code	Subject Name	Category	L	Т	P	C
OME24002	ENERGY CONSERVATION AND MANAGEMENT IN DOMESTIC SECTORS	OEC	3	0	0	3

Course Objective:

- To learn the present energy scenario and the need for energy conservation.
- To understand the different measures for energy conservation in utilities.
- Acquaint students with principle theories, materials, and construction techniques to create energy efficient buildings.
- To identify sustainable the energy demand and bridge the gap with suitable technology for habitat
- To get familiar with the energy technology, current status of research and find the ways to optimize a system as per the user requirement

UNIT – I ENERGY SCENARIO

9

Primary energy resources - Sectorial energy consumption (domestic, industrial and other sectors), Energy pricing, Energy conservation and its importance, Energy Conservation Act-2001 and its features – Energy star rating.

UNIT – II HEATING, VENTILLATION & AIR CONDITIONING

9

Basics of Refrigeration and Air Conditioning – COP / EER / SEC Evaluation – SPV system design & optimization for Solar Refrigeration.

UNIT – III LIGHTING, COMPUTER, TV

9

Specification of Luminaries – Types – Efficacy – Selection & Application – Time Sensors – Occupancy Sensors – Energy conservation measures in computer – Television – Electronic devices.

UNIT – IV ENERGY EFFICIENT BUILDINGS

9

Conventional versus Energy efficient buildings – Landscape design – Envelope heat loss and heat gain - Passive cooling and heating – Renewable sources integration.

UNIT – V ENERGY STORAGE TECHNOLOGIES

9

Necessity & types of energy storage – Thermal energy storage – Battery energy storage, charging and discharging – Hydrogen energy storage & Super capacitors – energy density and safety issues – Applications.

Total Contact Hours: 45

Course Outcomes:	Upon completion of the course students should be able to:
CO1:	Understand technical aspects of energy conservation scenario.
CO2:	Energy audit in any type for domestic buildings and suggest the conservation measures.
CO3:	Perform building load estimates and design the energy efficient landscape system.
CO4:	Gain knowledge to utilize an appliance/device sustainably
CO5:	Understand the status and current technological advancement in energy storage field

References:

- 1. Yogi Goswami, Frank Kreith, Energy Efficiency and Renewable energy Handbook, CRC Press, 2016
- 2. ASHRAE Handbook 2020 HVAC Systems & Equipment

HoD / BOS Chairman

3.	Paolo Bertoldi, Andrea Ricci, Anibal de Almeida, Energy Efficiency in Household Appliances and
	Lighting, Conference proceedings, Springer, 2001
4.	David A. Bainbridge, Ken Haggard, Kenneth L. Haggard, Passive Solar Architecture: Heating,
	Cooling, Ventilation, Daylighting, and More Using Natural Flows, Chelsea Green Publishing, 2011.
5.	Guide book for National Certification Examination for Energy Managers and Energy Auditors (Could
	be downloaded from www.energymanagertraining.com)
6.	Ibrahim Dincer and Mark A. Rosen, Thermal Energy Storage Systems and Applications, John Wiley
	& Sons 2002.
7.	Robert Huggins, Energy Storage: Fundamentals, Materials and Applications, 2nd edition,
	Springer, 2015
8.	Ru-shiliu, Leizhang, Xueliang sun, Electrochemical technologies for energy storage and
	conversion, Wiley publications, 2012.

CO-PO Mapping								
PO / CO	PO1	PO2	PO3	PO4	PO5	PO6		
CO1:	3	1	3	2	2	2		
CO2:	3	1	3	2	2	2		
CO3:	3	1	3	2	2	2		
CO4:	3	1	3	2	2	2		
CO5:	3	1	3	2	2	2		
Average:	3	1	3	2	2	2		

Subject Coo	le	Subject Name	Subject Name Category			P	C			
OME2400	3	ADDITIVE MANUFACTURING OEC		3	0	0	3			
UNIT – I	IN	TRODUCTION					9			
Need - Develop	me	nt - Rapid Prototyping Rapid Tooling – Rapid Manufac	turing - Addit	ive						
Manufacturing.	AN	1 Process Chain- Classification – Benefits.								
UNIT – II		DESIGN FOR ADDITIVE MANUFACTURING								
CAD Model Pr	epa	ration - Part Orientation and Support Structure General	ration -Model	Slici	ng -	Tool	Path			
Generation Cus	tom	nized Design and Fabrication - Case Studies.								
UNIT – III		AT POLYMERIZATION					9			
Stereolithograp	hy 2	Apparatus (SLA)- Materials -Process -Advantages Lim	itations- Appli	cation	ns.					
Digital Light Pr	oce	essing (DLP) - Materials - Process - Advantages - Appl	ications. Multi	Jet						
Modelling (MJ)	M)	- Principles - Process - Materials - Advantages and lim	itations.							
UNIT – IV		ATERIAL EXTRUSION AND SHEET LAMINAT					9			
Fused Deposition	on l	Modeling (FDM)- Process-Materials - Applications and	Limitations. S	heet						
Lamination Pro	oces	ss: Laminated Object Manufacturing (LOM)- Basic	Principle- Me	chani	sm:	Gluit	ig of			
		- Thermal Bonding- Materials- Application and Limita	ition - Bio-Add	itive	Man	utact	uring			
		issue Engineering (CATE) – Case studies								
POWDER BA			1 4 1 1 4	ж	/r14!	L.4 E.	:			
Selective Laser	Sir	ntering (SLS): Process –Mechanism– Typical Materials	and Application	on- IV	1ulu :1	Jet F	usioi			
- Basic Princip	le	Materials- Application and Limitation - Three Dimens	Books Malting		teriai	S -PT	ocess : ala			
- Benefits and	Lim	nitations. Selective Laser Melting (SLM) and Electron	Beam Meiting	(EBI	VI): N	Tater.	iais -			
Process - Adva	nta	ges and Applications. Beam Deposition Process: Laser	Engineered N	et Sn	apını	g (re	MO).			
	ial I	Delivery - Process Parameters - Materials -Benefits -Ap	opiications.	COLUMN TWO	TRIC		10			
UNIT – V		ASE STUDIES AND OPPORTUNITIES ADDITIV	E MANUFAC	TUR	UNG		9			
		ROCESSES	grag h , h sans h	ъ.			1 1			
Education and	traiı	ning - Automobile- pattern and mould - tooling - Buildi	ing Printing-Bi	o Pri	nting	- me	dical			
		ment of surgical tools Food Printing -Printing Electroni	cs. Business O	pport	uniti	es an	u			
Future Direction	ns -	- Intellectual Property.	MD 4 3	<u> </u>	/ T		. 40			
			Total	Lont	act E	10Urs	: 45			

References:

- 1. Andreas Gebhardt and Jan-Steffen Hötter "Additive Manufacturing: 3D Printing for Prototyping and Manufacturing", Hanser publications, United States, 2015, ISBN: 978-1- 56990-582
- 2. Ian Gibson, David W. Rosen and Brent Stucker "Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing", 2nd edition, Springer., United States, 2015, ISBN13: 978-1493921126.
- 3. Amit Bandyopadhyay and Susmita Bose, "Additive Manufacturing", 1st Edition, CRC Press., United States, 2015, ISBN-13: 978-1482223590
- 4. Andreas Gebhardt, "Understanding Additive Manufacturing: Rapid Prototyping, Rapid Manufacturing", Hanser Gardner Publication, Cincinnati., Ohio, 2011, ISBN :9783446425521.
- 5. Chua C.K., Leong K.F., and Lim C.S., "Rapid prototyping: Principles and applications", Third edition, World Scientific Publishers, 2010.

HoD / BOS Chairman

CO-PO Mapping							
PO / CO	PO1	PO2	PO3	PO4	PO5	PO6	
CO1:	3	3	3	2	3	2	
CO2:	3	3	3	2	3	2	
CO3:	3	3	3	2	3	2	
CO4:	3	3	3	2	3	2	
CO5:	3	3	3	2	3	2	
Average:	3	3	3	2	3	2	

Subject Code	Subject Name	Category	L	Т	P	C
OME24004	ELECTRIC VEHICLE TECHNOLOGY	OEC	3	0	0	3
ourse Objective						_

Course Objective:

- To Understand the Evolution and Motivation Behind EVs and HEVs
- To Understand the Fundamental Architecture of Electric Vehicles
- To Analyze Different Types of Energy Storage Technologies
- To Understand the Role of Electric Drives in Electric Vehicles (EVs)
- To Design Powertrain and Drivetrain Systems for EVs and Evaluate Battery Systems and Energy **Storage Solutions**

NEED FOR ELECTRIC VEHICLES UNIT - I

History and need for electric and hybrid vehicles, social and environmental importance of hybrid and electric vehicles, impact of modern drive-trains on energy supplies, comparison of diesel, petrol, electric and hybrid vehicles, limitations, technical challenges

ELECTRIC VEHICLE ARCHITECHTURE UNIT - II

9

Electric vehicle types, layout and power delivery, performance – traction motor characteristics.

tractive effort, transmission requirements, vehicle performance, energy consumption, Concepts of hybrid electric drive train, architecture of series and parallel hybrid electric drive train, merits and demerits, mild and

ENERGY STORAGE UNIT - III

Batteries - types - lead acid batteries, nickel based batteries, and lithium based batteries, electrochemical reactions, thermodynamic voltage, specific energy, specific power, energy efficiency, Battery modeling and equivalent circuit, battery charging and types, battery cooling, Ultra-capacitors, Flywheel technology, Hydrogen fuel cell, Thermal Management of the PEM fuel cell

ELECTRIC DRIVES AND CONTROL UNIT - IV

9

Types of electric motors - working principle of AC and DC motors, advantages and limitations, DC motor drives and control, Induction motor drives and control, PMSM and brushless DC motor - drives and control, AC and Switch reluctance motor drives and control - Drive system efficiency - Inverters - DC and AC motor speed controllers

DESIGN OF ELECTRIC VEHICLES UNIT - V

Materials and types of production, Chassis skate board design, motor sizing, power pack sizing, component matching, Ideal gear box - Gear ratio, torque-speed characteristics, Dynamic equation of vehicle motion, Maximum tractive effort - Power train tractive effort Acceleration performance, rated vehicle velocity maximum gradability, Brake performance, Electronic control system, safety and challenges in electric vehicles. Case study of Nissan leaf, Toyota Prius, tesla model 3, and Renault Zoe cars.

Total Contact Hours: 45

References:

- Iqbal Hussein, Electric and Hybrid Vehicles: Design Fundamentals, 2nd edition CRC Press, 2011.
- Mehrdad Ehsani, Yimi Gao, Sebastian E. Gay, Ali Emadi, Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design, CRC Press, 2004.

120

James Larminie, John Lowry, Electric Vehicle Technology Explained - Wiley, 2003.

HoD / BOS Chairman

4. Ehsani, M, "Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design", CRC Press, 2005

CO-PO Mapping						
PO/CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1:	3	_	3	3	2	2
CO2:	3	_	3	3	2	2
CO3:	3	-	3	3	2	2
CO4:	3		3	3	2	2
CO5:	3	_	3	3	2	2
Average:	3	-	3	3	2	2

HoD / BOS Chairman

Subject Code	Subject Name	Category	L	Т	P	С
OME24005	NEW PRODUCT DEVELOPMENT	OEC	3	0	0	3

Course Objective:

- Applying the principles of generic development process; and understanding the organization structure for new product design and development.
- Identifying opportunity and planning for new product design and development.
- Conducting customer need analysis; and setting product specification for new product design and development.
- Generating, selecting, and testing the concepts for new product design and development.
- Appling the principles of Industrial design and prototype for new product design and development.

UNIT - I INTRODUCTION TO PRODUCTDESIGN & DEVELOPMENT

9

Introduction – Characteristics of Successful Product Development – People involved in Product Design and Development – Duration and Cost of Product Development – The Challenges of Product Development – The Product Development Process – Concept Development: The Front-End Process – Adapting the Generic Product Development Process – Product Development Process Flows – Product Development Organizations.

UNIT – II OPPORTUNITY DENTIFICATION & PRODUCT PLANNING

9

Opportunity Identification: Definition – Types of Opportunities – Tournament Structure of Opportunity Identification – Effective Opportunity Tournaments – Opportunity Identification Process – Product Planning: Four types of Product Development Projects – The Process of Product Planning.

UNIT - III | IDENTIFYING CUSTOMER NEEDS & PRODUCT SPECIFICATIONS

9

Identifying Customer Needs: The Importance of Latent Needs – The Process of Identifying Customer Needs. Product Specifications: Definition – Time of Specifications Establishment – Establishing Target Specifications – Setting the Final Specifications

UNIT – IV CONCEPT GENERATION, SELECTION & TESTING

9

Concept Generation: Activity of Concept Generation – Structured Approach – Five step method of Concept Generation. Concept Selection: Methodology – Concept Screening and Concepts Scoring. Concept testing: Seven Step activities of concept testing.

UNIT – V INDUSTRIAL DESIGN & PROTOTYPING

9

Industrial Design: Need and Impact-Industrial Design Process. Prototyping – Principles of Prototyping – Prototyping Technologies – Planning for Prototypes.

Total Contact Hours: 45

Course Outcomes:	Upon completion of the course students should be able to:
CO1:	Apply the principles of generic development process; and understand the
	organization structure for new product design and development.
CO2:	Identify opportunity and plan for new product design and development.
CO3:	Conduct customer need analysis; and set product specification for new product design
CO4:	Generate, select, and test the concepts for new product design and development.

HoD / BOS Chairman

Principal

122

	CO5:	Apply the principles of Industrial design and prototype for design and develop new
Tex	tbooks:	
1	Ulrich K.T.	, Eppinger S. D. and Anita Goyal, "Product Design and Development "McGrawHill
Refe	rences:	
1.	Belz A., 36-H	our Course: "Product Development" McGraw-Hill, 2010.
2	Orwin,Homey	'Effective Product Design and Development", Business One wood, 1992,ISBN1-55623-603-4.
3.	Pugh.S,"Total	Design Integrated Methods for Successful Product Engineering", Addison
	Wesley Publis	shing,1991,ISBN0-202-41639-5.
4.	Chitale, A. K.	and Gupta, R. C., Product Design and Manufacturing, PHI Learning, 2013.
5.	Jamnia, A., Ir	troduction to Product Design and Development for Engineers, CRC Press,
	2018.	

CO-PO Mapping						
PO / CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1:	3	-	3	3	2	2
CO2:	3	-	3	3	2	2
CO3:	3	-	3	3	2	2
CO4:	3	_	3	3	2	2
CO5:	3	-	3	3	2	2
Average:	3	- +	3	3	2	2

Subject Code	Subject Name	Category	L	Т	P	C
OBA24001	SUSTAINABLE MANAGEMENT	OEC	3	0	0	3

Course Objective:

- To provide students with fundamental knowledge of the notion of corporate sustainability.
- To determine how organizations impacts on the environment and socio-technical systems, the relationship between social and environmental performance and competitiveness, the approaches and methods.

UNIT – I MANAGEMENT OF SUSTAINABILITY

9

Management of sustainability -rationale and political trends: An introduction to sustainability management, International and European policies on sustainable development, theoretical pillars in sustainability management studies.

UNIT - II | CORPORATE SUSTAINABILITY AND RESPONSIBILITY

9

Corporate sustainability parameter, corporate sustainability institutional framework, integration of sustainability into strategic planning and regular business practices, fundamentals of stakeholder engagement.

UNIT - III | SUSTAINABILITY MANAGEMENT: STRATEGIES AND APPROACHES

Corporate sustainability management and competitiveness: Sustainability-oriented corporate strategies, markets and competitiveness, Green Management between theory and practice,

Sustainable Consumption and Green Marketing strategies, Environmental regulation and strategic postures; Green Management approaches and tools; Green engineering: clean technologies and innovation processes; Sustainable Supply Chain Management and Procurement.

UNIT - IV SUSTAINABILITY AND INNOVATION

9

Socio-technical transitions and sustainability, Sustainable entrepreneurship, Sustainable pioneers in green market niches, Smart communities and smart specializations.

UNIT - V SUSTAINABLE MANAGEMENT OF RESOURCES, COMMODITIES AND COMMONS

9

Energy management, Water management, Waste management, Wild Life Conservation, Emerging trends in sustainable management, Case Studies

Total Contact Hours: 45

Course Outcomes:	Upon completion of the course students should be able to:
CO1:	An understanding of sustainability management as an approach to aid in evaluating and
	minimizing environmental impacts while achieving the expected social impact.
CO2:	An understanding of corporate sustainability and responsible Business Practices
CO3:	Knowledge and skills to understand, to measure and interpret sustainability
	performances.
CO4:	Knowledge of innovative practices in sustainable business and community
	management.
CO5:	Deep understanding of sustainable management of resources and commodities

References:

- 1. Daddi, T., Iraldo, F., Testa, Environmental Certification for Organizations and Products: Management, 2015.
- 2. Christian N. Madu, Handbook of Sustainability Management 2012

HoD / BOS Chairman

124

3.	Petra Molthan-Hill, The Business Student's Guide to Sustainable Management: Principles
	and Practice, 2014.
	2.5 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1

- 4. Margaret Robertson, Sustainability Principles and Practice, 2014.
- 5. Peter Rogers, An Introduction to Sustainable Development, 2006.

CO-PO Mapping							
PO / CO	PO1	PO2	PO3	PO4	PO5	PO6	
CO1:	3	3	2	1	2	2	
CO2:	3	2	2	2	1	2	
CO3:	3	3	1	2	2	3	
CO4:	3	3	2	1	1	2	
CO5:	3	3	2	1	2	2	
Average:	3	3	2	1	2	2	

Subject Code	Subject Name	Category	L	T	P	C
OBA24002	MICRO AND SMALL BUSINESS MANAGEMENT	OEC	3	0	0	3
Course Objective:						
To familiari	ize students with the theory and practice of small busi	ness managemei	nt.			
To learn the	e legal issues faced by small business and how they in	npact operations.				

UNIT – I INTRODUCTION TO SMALL BUSINESS

q

Creation, Innovation, entrepreneurship and small business - Defining Small Business -Role of Owner - Manager - government policy towards small business sector -elements of entrepreneurship -evolution of entrepreneurship -Types of Entrepreneurship - social, civic, corporate - Business life cycle - barriers and triggers to new venture creation - process to assist start ups - small business and family business.

UNIT – II SCREENING THE BUSINESS OPPORTUNITY AND FORMULATING THE BUSINESS PLAN

Concepts of opportunity recognition; Key factors leading to new venture failure; New venture screening process; Applying new venture screening process to the early stage small firm Role planning in small business – importance of strategy formulation – management skills for small business creation and development.

UNIT – III BUILDING THE RIGHT TEAM AND MARKETING STRATEGY

9

Management and Leadership – employee assessments – Tuckman's stages of group development - The entrepreneurial process model - Delegation and team building - Comparison of HR management in small and large firms - Importance of coaching and how to apply a coaching model. Marketing within the small business - success strategies for small business marketing - customer delight and business generating systems, - market research, - assessing market performance sales management and strategy - the marketing mix and marketing strategy.

UNIT – IV FINANCING SMALL BUSINESS

9

Main sources of entrepreneurial capital; Nature of 'bootstrap' financing - Difference between cash and profit - Nature of bank financing and equity financing - Funding-equity gap for small firms. Importance of working capital cycle - Calculation of break-even point - Power of gross profit margin- Pricing for profit - Credit policy issues and relating these to cash flow management and profitability

UNIT – V VALUING SMALL BUSINESS AND CRISIS MANAGEMENT

9

Causes of small business failure - Danger signals of impending trouble - Characteristics of poorly performing firms - Turnaround strategies - Concept of business valuation - Different valuation measurements - Nature of goodwill and how to measure it - Advantages and disadvantages of buying an established small firm - Process of preparing a business for sale.

Total Contact Hours: 45

Course Outcomes:	Upon completion of the course students should be able to:
CO1:	Familiarise the students with the concept of small business
CO2:	In depth knowledge on small business opportunities and challenges
CO3:	Ability to devise plans for small business by building the right skills and marketing
	strategies
CO4:	Identify the funding source for small start ups
CO5:	Business evaluation for buying and selling of small firms

HoD / BOS Chairman

References:

- 1. Hankinson, A. (2000). "The key factors in the profile of small firm owner-managers that influence business performance. The South Coast Small Firms Survey, 1997-2000." Industrial and Commercial Training 32(3):94-98.
- Parker,R.(2000). "Small is not necessarily beautiful: An evaluation of policy support for small and medium-sized enterprise in Australia." Australian Journal of Political Science 35(2):239-253.
- 3. Journal articles on SME's.

CO-PO Mapping							
PO / CO	PO1	PO2	PO3	PO4	PO5	PO6	
CO1:	2	2	1	1	-	-	
CO2:	3	3	3	3	2	3	
CO3:	3	3	2	2	3	3	
CO4:	3	2	2	2	1	1	
CO5:	3	2	2	3	2	1	
Average:	3	2	2	2	2	2	

HoD / BOS Chairman

Subject Code	Subject Name	Category	L	Т	P	С			
OBA24003	INTELLECTUAL PROPERTY RIGHTS	OEC	3	0	0	3			
Course Objective:									
• To un	nderstand intellectual property rights and its valuation.								

UNIT – I	INTRODUCTION	9
Intellectual pro	operty rights - Introduction, Basic concepts, Patents, Copyrights, Trademarks, Trade S	ecrets,
	dicators; Nature of Intellectual Property, Technological Research,	
	Innovations, History - the way from WTO to WIPO, TRIPS.	
UNIT – II	PROCESS	9
New Developr	nents in IPR, Procedure for grant of Patents, TM, GIs, Patenting under Patent	
Cooperation T	reaty, Administration of Patent system in India, Patenting in foreign countries.	
UNIT – III	STATUTES	9
International T	reaties and conventions on IPRs, The TRIPs Agreement, PCT Agreement, The	n:
	ndia, Patent Amendment Act (2005), Design Act, Trademark Act, Geographical	
Indication Act	, Bayh- Dole Act and Issues of Academic Entrepreneurship	
UNIT – IV	STRATEGIES IN INTELLECTUAL PROPERTY	9
Strategies for i	nvesting in R&D, Patent Information and databases, IPR strength in India,	
Traditional Kn	owledge, Case studies.	
UNIT – V	MODELS	9
	ies Know-how, concept of ownership, Significance of IP in Value Creation, IP	
Valuation and	IP Valuation Models, Application of Real Option Model in Strategic Decision	
Making, Trans	fer and Licensing.	
	Total Contact Hou	rs: 45

	Upon completion of the course students should be able to:			
CO1: Understanding of intellectual property and appreciation of the need to protect it.				
CO2:	Awareness about the process of patenting.			
CO3:	Understanding of the statutes related to IPR.			
CO4:	Ability to apply strategies to protect intellectual property.			
CO5:	Ability to apply models for making strategic decisions related to IPR.			

Ref	ferences:
1.	Sople Vinod, Managing Intellectual Property by (Prentice hall of India Pvt.Ltd), 2006.
2.	Intellectual Property rights and copyrights, EssEss Publications.
3.	Primer, R. Anita Rao and Bhanoji Rao, Intellectual Property Rights, Lastain Book company. Edited by
	Derek Bosworth and Elizabeth Webster, The Management of Intellectual Property, Edward Elgar
	Publishing Ltd., 2006.
4.	WIPO Intellectual Property Hand book.

		C	O-PO Mappin	g		
PO / CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1:	3	3	2	3	2	3
CO2:	3	3	2	3	1	3
CO3:	3	3	3	3	2	3
CO4:	3	3	3	2	1	3
CO5:	3	3	3	2	2	3
Average:	3	3	3	3	2	3

Subject Code	Subject Name	Category	L	T	P	C			
OBA24004	ETHICAL MANAGEMENT	OEC	3	0	0	3			
Course Objective:									
To help student	s develop knowledge and competence in ethic	al management and	l deci	sion	maki	ng in			

•	To help students develop knowledge and competence in ethical management and decision making in
	organizational contexts.

UNIT - I ETHICS AND SOCIETY Ethical Management- Definition, Motivation, Advantages-Practical implications of ethical management. Managerial ethics, professional ethics, and social Responsibility-Role of culture and society's expectations- Individual and organizational responsibility to society and the community. UNIT - II ETHICAL DECISION MAKING AND MANAGEMENT IN A CRISIS Managing in an ethical crisis, the nature of a crisis, ethics in crisis management, discuss case studies, analyze real-world scenarios, develop ethical management skills, knowledge, and competencies. Proactive crisis management STAKEHOLDERS IN ETHICAL MANAGEMENT 9 UNIT - III Stakeholders in ethical management, identifying internal and external stakeholders, nature of stakeholders, ethical management of various kinds of stakeholders: customers (product and service issues), employees (leadership, fairness, justice, diversity) suppliers, collaborators, business, community, the natural environment (the sustainability imperative, green management, Contemporary issues). UNIT - IV INDIVIDUAL VARIABLES IN ETHICAL MANAGEMENT Understanding individual variables in ethics, managerial ethics, concepts in ethical psychology - ethical awareness, ethical courage, ethical judgment, ethical foundations, ethical

emotions/intuitions/intensity. Utilization of these concepts and competencies for ethical decision making and management. 9

UNIT - V PRACTICAL FIELD-GUIDE, TECHNIQUES AND SKILLS

Ethical management in practice, development of techniques and skills, navigating challenges and dilemmas, resolving issues and preventing unethical management proactively. Role modelling and creating a culture of ethical management and human flourishing.

Total Contact Hours: 45

Course Outcomes:	Upon completion of the course students should be able to:
	Role modelling and influencing the ethical and cultural context
CO2:	Respond to ethical crises and proactively address potential crises situations.
CO3:	Understand and implement stakeholder management decisions.
	Develop the ability, knowledge, and skills for ethical management.
CO5:	Develop practical skills to navigate, resolve and thrive in management situations.

	rences:
1.	Brad Agle, Aaron Miller, Bill O' Rourke, The Business Ethics Field Guide: the essential
	companion to leading your career and your company, 2016.
2.	Steiner & Steiner, Business, Government & Society: A managerial Perspective, 2011.
3.	Lawrence & Weber, Business and Society: Stakeholders, Ethics, Public Policy, 2020.

HoD / BOS Chairman

		C	O-PO Mappin	g		
PO / CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1:	3	3	2	3	2	3
CO2:	-	3	2	3	1	3
CO3:	3	3	3	3	2	3
CO4:	3	3	3	2	1	3
CO5:	3	3	3	2	2	3
Average:	3	3	3	3	2	3

Subject Code	Subject Name	Category	L	T	P	C
ET24003	IoT FOR SMART SYSTEMS	OEC	3	0	0	3
Course Objective:						

- To study about Internet of Things technologies and its role in real time application
- To introduce the infrastructure required for IoT
- To familiarize the accessories and communication techniques for IoT
- To provide insight about the embedded processor and sensors required for IoT
- To familiarize the different platforms and Attributes for IoT

UNIT – I	INTRODUCTION TO INTERNET OF THINGS	9
Overview, Har	dware and software requirements for IOT, Sensor and actuators, Technology	
drivers, Busine	ss drivers, Typical IoT applications, Trends and implications.	
UNIT – II	IOT ARCHITECTURE	9
IoT reference r	nodel and architecture -Node Structure - Sensing, Processing, Communication,	
Powering, Net	working - Topologies, Layer/Stack architecture, IoT standards, Cloud computing for	ΙοΤ,
Bluetooth, Blu	etooth Low Energy beacons.	
UNIT – III	PROTOCOLS AND WIRELESS TECHNOLOGIES FOR IOT PROTOCOLS:	9
NFC, SCADA	and RFID, Zigbee MIPI, M-PHY, UniPro, SPMI, SPI, M-PCIe GSM, CDMA, LTE, GPF	RS,
small cell.		
Wireless techn	ologies for IoT: WiFi (IEEE 802.11), Bluetooth/Bluetooth Smart, ZigBee/ZigBee	
Smart, UWB (EEE 802.15.4), 6LoWPAN, Proprietary systems-Recent trends	
UNIT – IV	IOT PROCESSORS	9
Services/Attrib	utes: Big-Data Analytics for IOT, Dependability, Interoperability, Security,	
Maintainability	<i>I</i> ,	
Embedded pro	cessors for IOT :Introduction to Python programming -Building IOT with	
RASPERRY P	I and Arduino.	
UNIT – V	CASE STUDIES	9
Industrial IoT,	Home Automation, smart cities, Smart Grid, connected vehicles, electric vehicle	
charging, Envi	ronment, Agriculture, Productivity Applications, IOT Defense	

mpletion of the course students should be able to:
the concepts of IoT and its present developments.
and contrast different platforms and infrastructures available for IoT
different protocols and communication technologies used in IoT
the big data analytic and programming of IoT
nt IoT solutions for smart applications

Refe	erences:
1.	ArshdeepBahga and VijaiMadisetti : A Hands-on Approach "Internet of Things", Universities Press 2015.
2.	Oliver Hersent, David Boswarthick and Omar Elloumi "The Internet of Things", Wiley,2016
3.	Samuel Greengard, "The Internet of Things", The MIT press, 2015.
4.	Adrian McEwen and Hakim Cassimally Designing the Internet of Things "Wiley 2014.

Principal

Total Contact Hours: 45

5.	Jean-Philippe Vasseur, Adam Dunkels, "Interconnecting Smart Objects with IP: The Next Internet"
	Morgan Kuffmann Publishers, 2010
6.	Adrian McEwen and Hakim Cassimally, "Designing the Internet of Things", John Wiley and sons,
	2014.
7.	Lingyang Song/DusitNiyato/ Zhu Han/ Ekram Hossain," Wireless Device-to-Device
	Communications and Networks, CAMBRIDGE UNIVERSITY PRESS,2015
8.	OvidiuVermesan and Peter Friess (Editors), "Internet of Things: Converging Technologies for Smart
	Environments and Integrated Ecosystems", River Publishers Series in Communication, 2013
9.	Vijay Madisetti, ArshdeepBahga, "Internet of Things (A Hands on-Approach)", 2014.
10.	Zach Shelby, Carsten Bormann, "6LoWPAN: The Wireless Embedded Internet", John Wiley and
	sons, 2009
11.	Lars T.Berger and Krzysztof Iniewski, "Smart Grid applications, communications and
	security", Wiley, 2015.
12.	JanakaEkanayake, KithsiriLiyanage, Jianzhong Wu, Akihiko Yokoyama and Nick Jenkins, "Smart
	Grid Technology and Applications", Wiley, 2015.
13.	UpenaDalal,"Wireless Communications & Networks, Oxford, 2015.

		(CO-PO Mappin	g		
PO / CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1:	1	2	1	-	-	-
CO2:	- 1	2	-	-	-	-
CO3:	1	2	-	1	3	-
CO4:	2	-	3	3	3	3
CO5:	3	2	3	3	3	3
Average:	1.75	2	2.33	2.33	3	3

Subject Code	Subject Name	Category	L	Т	P	C
ET24002	MACHINE LEARNING AND DEEP LEARNING	OEC	3	0	0	3
Course Objective	•					
Understand	ling about the learning problem and algorithms					
Providing	Providing insight about neural networks					
Introducing the machine learning fundamentals and significance						
Enabling the state of the	ne students to acquire knowledge about pattern recognition	1.				
 Motivating the students to apply deep learning algorithms for solving real life problems. 						

UNIT – I	LEARNING PROBLEMS AND ALGORITHMS	9
Various paradi	gms of learning problems, Supervised, Semi-supervised and Unsupervised	
algorithms		
UNIT – II	NEURAL NETWORKS	9
Differences bet	ween Biological and Artificial Neural Networks - Typical Architecture, Common	
	ctions, Multi-layer neural network, Linear Separability, Hebb Net, Perceptron,	
	ard Back propagation Training Algorithms for Pattern Association - Hebb rule and	
	ero associative, Auto associative, Kohonen Self Organising Maps, Examples of	
	Learning Vector Quantization, Gradient descent, Boltzmann Machine Learning.	
UNIT – III	MACHINE LEARNING – FUNDAMENTALS & FEATURE SELECTIONS &	9
	CLASSIFICATIONS	
Classifying San	nples: The confusion matrix, Accuracy, Precision, Recall, F1- Score, the curse of	-
	training, testing, validation, cross validation, overfitting, under-fitting the data, early	
	arization, bias and variance. Feature Selection, normalization, dimensionality, reduction,	
	N, SVM, Decision trees, Naïve Bayes, Binary classification, multi class classification,	
clustering.		
UNIT – IV	DEEP LEARNING: CONVOLUTIONAL NEURAL NETWORKS	9
Feed forward n	etworks, Activation functions, back propagation in CNN, optimizers, batch	
normalization,	convolution layers, pooling layers, fully connected layers, dropout, Examples of	
CNNs.		
UNIT – V	DEEP LEARNING: RNNS, AUTOENCODERS AND GANS	9
State, Structure	of RNN Cell, LSTM and GRU, Time distributed layers, Generating Text,	
	Convolutional Autoencoders, Denoising autoencoders, Variational autoencoders,	
	criminator, generator, DCGANs	
	Total Contact Hours	s:4

Course Outcomes:	Upon completion of the course students should be able to:
CO1:	Illustrate the categorization of machine learning algorithms.
CO2:	Compare and contrast the types of neural network architectures, activation functions
CO3:	Acquaint with the pattern association using neural networks
CO4:	Elaborate various terminologies related with pattern recognition and architectures of
	convolutional neural networks
CO5:	Construct different feature selection and classification techniques and advanced neural
	network architectures such as RNN, Autoencoders, and GANs.

Refe	rences:
1.	J. S. R. Jang, C. T. Sun, E. Mizutani, Neuro Fuzzy and Soft Computing - A Computational
	Approach to Learning and Machine Intelligence, 2012, PHI learning
2.	Deep Learning, Ian Good fellow, YoshuaBengio and Aaron Courville, MIT Press, ISBN:
	9780262035613, 2016.
3.	The Elements of Statistical Learning. Trevor Hastie, Robert Tibshirani and Jerome Friedman. Second
	Edition. 2009.
4.	Pattern Recognition and Machine Learning. Christopher Bishop. Springer. 2006.
5.	Understanding Machine Learning. Shai Shalev-Shwartz and Shai Ben-David. Cambridge
	University Press. 2017.

	CO-PO Mapping					
PO / CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1:	1	3	1	-	-	-
CO2:	2	3	2	_	-	-
CO3:	3	**	3	-	3	-
CO4:	2	3	3	_	-	-
CO5:	3	3	3	_	3	-
Average:	2	3	3	-	3	_

Subject Code	ct Code Subject Name Categor		L	T	P	C		
PX24010	RENEWABLE ENERGY TECHNOLOGY	OEC	3	0	0	3		
Course Objective:								
 Different type 	Different types of renewable energy technologies							
Standalone o	peration, grid connected operation of renewable energ	y systems						

UNIT – I	INTRODUCTION	9
Classification of	of energy sources - Co2 Emission - Features of Renewable energy - Renewable	
	in India -Environmental aspects of electric energy conversion: impacts of	
renewable ener	gy generation on environment Per Capital Consumption - CO2 Emission -	
importance of i	renewable energy sources, Potentials – Achievements– Applications.	
UNIT – II	SOLAR PHOTOVOLTAICS	9
Solar Energy: S	Sun and Earth-Basic Characteristics of solar radiation- angle of sunrays on solar	-
collector-Estim	ating Solar Radiation Empirically - Equivalent circuit of PV Cell- Photovo	ltaic
	ics: P-V and I-V curve of cell-Impact of Temperature and Insolation on I-V	
	Shading Impacts on I-V characteristics-Bypass diode -Blocking diode.	
UNIT – III	PHOTOVOLTAIC SYSTEM DESIGN	9
Block diagram	of solar photo voltaic system: Line commutated converters (inversion mode) -	-
Boost and buck	a-boost converters - selection of inverter, battery sizing, array sizing - PV systems	
classification-s	standalone PV systems - Grid tied and grid interactive inverters- grid connection	
UNIT – IV	WIND ENERGY CONVERSION SYSTEMS	9
Origin of Wind	s: Global and Local Winds- Aerodynamics of Wind turbine-Derivation of Betz's limit - Po	wer
available in wir	nd-Classification of wind turbine: Horizontal Axis wind turbine and Vertical axis wind turb	oine-
Aerodynamic I	Efficiency-Tip Speed-Tip Speed Ratio-Solidity-Blade Count-Power curve of wind turb	ine -
Configurations	of wind energy conversion systems: Type A, Type B, Type C and Type D Configurati	ons-
	1 Issues - Grid integrated SCIG and PMSG based WECS.	
UNIT – V	OTHER RENEWABLE ENERGY SOURCES	9
Qualitative stud	ly of different renewable energy resources: ocean, Biomass, Hydrogen energy	
	ells, Ocean Thermal Energy Conversion (OTEC), Tidal and wave energy,	
Geothermal En		
	Total Contact Hours	: 45

Course Outcomes:	Upon completion of the course students should be able to:
CO1:	Demonstrate the need for renewable energy sources.
CO2:	Develop a stand-alone photo voltaic system and implement a maximum power point
	tracking in the PV system.
CO3:	Design a stand-alone and Grid connected PV system.
CO4:	Analyze the different configurations of the wind energy conversion systems.
CO5:	Realize the basic of various available renewable energy sources

References:

S.N.Bhadra, D. Kastha, & S. Banerjee "Wind Electrical Systems", Oxford UniversityPress, 2009. Rai. G.D, "Non conventional energy sources", Khanna publishes, 1993.

HoD / BOS Chairman

3.	Rai. G.D," Solar energy utilization", Khanna publishes, 1993.
4.	Chetan Singh Solanki, "Solar Photovoltaics: Fundamentals, Technologies and
	Applications", PHI Learning Private Limited, 2012.
5.	John Twideu and Tony Weir, "Renewal Energy Resources" BSP Publications, 2006
6.	Gray, L. Johnson, "Wind energy system", prentice hall of India, 1995.
7.	B.H.Khan, "Non-conventional Energy sources", McGraw-hill, 2nd Edition, 2009.
8.	Fang Lin Luo Hong Ye, "Renewable Energy systems", Taylor & Francis Group,2013

		(CO-PO Mappin	g		
PO / CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1:	3	-	2	2	2	1
CO2:	3	-	2	3	3	3
CO3:	3	-	2	3	3	3
CO4:	3	-	2	3	3	2
CO5:	3	-	2	2	2	2
Average:	3	-	2	3	3	2

Subject Code	Subject Name	Category	L	Т	P	C
PS24003	SMART GRID	OEC	3	0	0	3
Course Objective:						
 To Study about Sm infrastructure. 	art Grid technologies, different smart me	eters and advanced me	tering	5		
 To know about the 	function of smart grid.					
• To familiarize the	oower quality management issues in Sma	art Grid.				
To familiarize the l	nigh performance computing for Smart C	Grid applications				
 To familiarize the l 	with the communication networks for S	1.1				

UNIT – I	INTRODUCTION TO SMART GRID	9
Evolution of El	ectric Grid, Concept, Definitions and Need for Smart Grid, Smart grid drivers,	
functions, oppo	rtunities, challenges and benefits, Difference between conventional & Smart Grid,	
Comparison of	Micro grid and Smart grid, Present development & International policies in Smart	
	d Initiative for Power Distribution Utility in India – Case Study.	
UNIT – II	SMART GRID TECHNOLOGIES	9
Technology Dr	ivers, Smart Integration of energy resources, Smart substations, Substation	
Automation, Fe	eder Automation, Transmission systems: EMS, FACTS and HVDC, Wide area	
monitoring, Pro	otection and control, Distribution systems: DMS, Volt/Var control, Fault Detection,	
Isolation and s	ervice restoration, Outage management, High-Efficiency Distribution Transformers, P	hase
Shifting Transf	Formers, Plug in Hybrid Electric Vehicles (PHEV) - Grid to Vehicle and Vehicle to	Grid
charging conce	pts.	
UNIT – III	SMART METERS AND ADVANCED METERING INFRASTRUCTURE	9
Introduction to	Smart Meters, Advanced Metering infrastructure (AMI) drivers and benefits, AMI protoc	cols,
standards and in	nitiatives, AMI needs in the smart grid, Phasor Measurement Unit(PMU) & their applicat	ion
for monitoring	& protection. Demand side management and demand response programs, Demand pricin	g
and Time of Us	se, Real Time Pricing, Peak Time Pricing.	
UNIT – IV	POWER QUALITY MANAGEMENT IN SMART GRID	9
Power Quality	& EMC in Smart Grid, Power Quality issues of Grid connected Renewable Energy	
Sources, Power	r Quality Conditioners for Smart Grid, Web based Power Quality monitoring, Power Qu	ality
Audit.		,
UNIT – V	HIGH PERFORMANCE COMPUTING FOR SMART GRID APPLICATIONS	9
Architecture ar	d Standards -Local Area Network (LAN), House Area Network (HAN), Wide Area Network	vork
(WAN), Broad	band over Power line (BPL), PLC, Zigbee, GSM, IP based Protocols, Basics of Web Serv	vice
	omputing, Cyber Security for Smart Grid.	
	Total Contact Hours	: 45

Course Outcomes:	Upon completion of the course students should be able to:	
CO1:	Relate with the smart resources, smart meters and other smart devices.	
CO2:	Explain the function of Smart Grid	
CO3:	Experiment the issues of Power Quality in Smart Grid.	
CO4:	Analyze the performance of Smart Grid	
CO5:	Recommend suitable communication networks for smart grid applications	
111		

138

Refe	erences:
1.	Stuart Borlase 'Smart Grid: Infrastructure, Technology and Solutions', CRC Press 2012.
2.	JanakaEkanayake, Nick Jenkins, KithsiriLiyanage, Jianzhong Wu, Akihiko Yokoyama,
	'Smart Grid: Technology and Applications', Wiley, 2012.
3.	Mini S. Thomas, John D McDonald, 'Power System SCADA and Smart Grids', CRC Press, 2015
4.	Kenneth C.Budka, Jayant G. Deshpande, Marina Thottan, 'Communication Networks for
	Smart Grids', Springer, 2014
5.	SMART GRID Fundamentals of Design and Analysis, James Momoh, IEEE press, A John Wiley &
	Sons, Inc., Publication

		(CO-PO Mappin	ıg		
PO / CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1:	3	2	-	2	2	2
CO2:	3	-	2	2	-	2
CO3:	2	-	1	-	-	-
CO4:	1	-	_	3	3	1
CO5:	-	2	2	2	2	3
Average:	2.25	2	1.66	2.25	2.3	2

Subject Code	Subject Name	Category	L	Т	P	C
DS24001	BIG DATA ANALYTICS	OEC	3	0	0	3
Course Objective:		•				
To understar	nd the basics of big data analytics					
To understar	nd the search methods and visualization					
To learn mir	ing data streams					
To learn fran	neworks					
To gain know	wledge on R language					

UNIT – I	INTRODUCTION TO BIG DATA	9
	Big Data Platform – Challenges of Conventional Systems - Intelligent data analysis –N	ature
	lytic Processes and Tools - Analysis Vs Reporting - Modern Data Analytic Tools- Statis	
	ppling Distributions - Re-Sampling - Statistical Inference - Prediction Error.	
UNIT - II	SEARCH METHODS AND VISUALIZATION	9
	ulated Annealing – Stochastic, Adaptive search by Evaluation – Evaluation	
	metic Algorithm – Genetic Programming – Visualization – Classification of Visual	
	Techniques – Data Types – Visualization Techniques – Interaction techniques –	
	Il data analysis Techniques	
UNIT – III	MINING DATA STREAMS	9
_	o Streams Concepts - Stream Data Model and Architecture - Stream Computing -	
Sampling Data	a in a Stream - Filtering Streams - Counting Distinct Elements in a Stream - Estimating	
	ounting Oneness in a Window – Decaying Window - Real time Analytics	
Platform(RTA	P) Applications - Case Studies - Real Time Sentiment Analysis, Stock Market Prediction	S
UNIT – IV	FRAMEWORKS	9
MapReduce -	Hadoop, Hive, MapR - Sharding - NoSQL Databases - S3 - Hadoop Distributed File Sys	tems
- Case Study	- Preventing Private Information Inference Attacks on Social Network - Grand	
	plying Regulatory Science and Big Data to Improve Medical Device	
Innovation		
UNIT – V	R LANGUAGE	9
Overview, Pro	ogramming structures: Control statements -Operators -Functions -Environment and scope	
	ion -Replacement functions, R data structures: Vectors -Matrices and arrays - Lists -Data	
	es, Input/output, String manipulations	
	Total Contact Hours	: 45

Course Outcomes:	Upon completion of the course students should be able to:
CO1:	Understand the basics of big data analytics
CO2:	Ability to use Hadoop, Map Reduce Framework.
CO3:	Ability to identify the areas for applying big data analytics for increasing the business
	outcome.
CO4:	Gain knowledge on R language
CO5:	Contextually integrate and correlate large amounts of information to gain faster insight

References:

HoD / BOS Chairman

Princip

1.	Michael Berthold, David J. Hand, Intelligent Data Analysis, Springer, 2007.
2.	Anand Rajaraman and Jeffrey David Ullman, Mining of Massive Datasets, Cambridge
	University Press, 3rd edition 2020.
3.	Norman Matloff, The Art of R Programming: A Tour of Statistical Software Design,
	No Starch Press, USA, 2011.
4.	Bill Franks, Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data
	Streams with Advanced Analytics, John Wiley & sons, 2012.
5.	Glenn J. Myatt, Making Sense of Data, John Wiley & Sons, 2007.

		(CO-PO Mappin	g		
PO / CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1:	3	3	3	3	2	1
CO2:	3	3	3	3	2	1
CO3:	3	3	3	3	2	1
CO4:	3	3	3	3	2	1
CO5:	3	3	3	3	2	1
Average:	3	3	3	3	2	1

Subject Code	Subject Name	Category	L	T	P	C
NC24001	INTERNET OF THINGS AND CLOUD	OEC	3	0	0	3
Course Objective:						
To understar	nd Smart Objects and IoT Architectures		10.7			
To learn about various IOT-related protocols						
To build sim	ple IoT Systems using Arduino and Raspberry Pi.					
To understand data analytics and cloud in the context of IoT						
To develop IoT infrastructure for popular applications						

UNIT – I	FUNDAMENTALS OF IoT	9
Introduction to	IoT - IoT definition - Characteristics - IoT Complete Architectural Stack - IoT	
enabling Techr	ologies - IoT Challenges. Sensors and Hardware for IoT - Hardware Platforms -	
Arduino, Raspl	perry Pi, Node MCU. A Case study with any one of the boards and data acquisition	
from sensors.		
UNIT – II	PROTOCOLS FOR IoT	9
Infrastructure p	protocol (IPV4/V6/RPL), Identification (URIs), Transport (Wifi, Lifi, BLE), Discovery,	Data
Protocols, Dev	ice Management Protocols A Case Study with MQTT/CoAP usage-IoT privacy,	
security and vu	lnerability solutions	
UNIT – III	CASE STUDIES/INDUSTRIAL APPLICATIONS	9
Case studies w	ith architectural analysis: IoT applications – Smart City – Smart Water – Smart	
Agriculture - S	Smart Energy – Smart Healthcare – Smart Transportation – Smart Retail – Smart	
waste manager	nent.	
UNIT – IV	CLOUD COMPUTING INTRODUCTION	9
Introduction to	Cloud Computing - Service Model - Deployment Model- Virtualization Concepts - C	loud
Platforms - Ar	nazon AWS Microsoft Azure Google APIs	
UNIT – V	IoT AND CLOUD	9
	oud - Role of Cloud Computing in IoT - AWS Components - S3 - Lambda - AWS IoT Co	ore -
	veb application to AWS IoT using MQTT- AWS IoT Examples. Security Concerns, Risk	
Issues, and Leg	gal Aspects of Cloud Computing- Cloud Data Security	
	Total Contact Hours	: 45

Course Outcomes:	Upon completion of the course students should be able to:	
CO1:	O1: Understand the various concept of the IoT and their technologies	
CO2:	Develop IoT application using different hardware platforms	
CO3:	Implement the various IoT Protocols	
CO4:	Understand the basic principles of cloud computing.	
CO5:	Develop and deploy the IoT application into cloud environment	

References:			
1.	"The Internet of Things: Enabling Technologies, Platforms, and Use Cases", by Pethuru Raj and		
	Anupama C. Raman ,CRC Press, 2017		
2.	Adrian McEwen, Designing the Internet of Things, Wiley, 2013.		
3.	EMC Education Services, "Data Science and Big Data Analytics: Discovering, Analyzing,		
	Visualizing and Presenting Data", Wiley publishers, 2015.		
HoD / BOS Chairman Princip			

4.	Simon Walkowiak, "Big Data Analytics with R" PackT Publishers, 2016
5.	Bart Baesens, "Analytics in a Big Data World: The Essential Guide to Data Science and its
	Applications", Wiley Publishers, 2015

CO-PO Mapping									
PO / CO	PO1	PO2	PO3	PO4	PO5	PO6			
CO1:	3	2	2	1	2	1			
CO2:	3	3	2	2	2	2			
CO3:	2	3	3	2	2	2			
CO4:	2	2	3	2	3	1			
CO5:	3	2	3	2	3	2			
Average:	2.6	2.4	2.6	1.8	2.4	1.6			

Subject Code	Subject Name	Category	L	T	P	С
MX24001	MEDICAL ROBOTICS	OEC	3	0	0	3
Course Objective:						
To explain the second control of the se	ne basic concepts of robots and types of robots					
 To discuss the 	ne designing procedure of manipulators, actuators and a	grippers				
To impart kr	nowledge on various types of sensors and power source	S				
To explore v	arious applications of Robots in Medicine					

UNIT-I INTRODUCTION TO ROBOTICS

To impart knowledge on wearable robots

9

Introduction to Robotics, Overview of robot subsystems, Degrees of freedom, configurations and concept of workspace, Dynamic Stabilization Sensors and Actuators Sensors and controllers, Internal and external sensors, position, velocity and acceleration sensors, Proximity sensors, force sensors Pneumatic and hydraulic actuators, Stepper motor control circuits, End effectors, Various types of Grippers, PD and PID feedback actuator models

UNIT - II MANIPULATORS & BASIC KINEMATICS

Construction of Manipulators, Manipulator Dynamic and Force Control, Electronic and pneumatic manipulator, Forward Kinematic Problems, Inverse Kinematic Problems, Solutions of Inverse Kinematic problems Navigation and Treatment Planning Variable speed arrangements, Path determination - Machinery vision, Ranging - Laser - Acoustic, Magnetic, fiber optic and Tactile sensor

UNIT - III **SURGICAL ROBOTS**

9

Da Vinci Surgical System, Image guided robotic systems for focal ultrasound based surgical applications, System concept for robotic Tele-surgical system for off-pump, CABG surgery, Urologic applications, Cardiac surgery, Neuro-surgery, Pediatric and General Surgery,

Gynecologic Surgery, General Surgery and Nanorobotics. Case Study

REHABILITATION AND ASSISTIVE ROBOTS

9

Pediatric Rehabilitation, Robotic Therapy for the Upper Extremity and Walking, Clinical-Based Gait Rehabilitation Robots, Motion Correlation and Tracking, Motion Prediction, Motion

Replication, Portable Robot for Tele rehabilitation, Robotic Exoskeletons - Design considerations, Hybrid assistive limb. Case Study

UNIT - V WEARABLE ROBOTS

Augmented Reality, Kinematics and Dynamics for Wearable Robots, Wearable Robot technology, Sensors, Actuators, Portable Energy Storage, Human-robot cognitive interaction (cHRI), Human-robot physical interaction (pHRI), Wearable Robotic Communication - case study

Total Contact Hours: 45

Course Outcomes:	Upon completion of the course students should be able to:								
CO1:	CO1: Describe the configuration, applications of robots and the concept of grippers an								
	actuators								
CO2:	Explain the functions of manipulators and basic kinematics								
CO3:	Describe the application of robots in various surgeries								
CO4:	Design and analyze the robotic systems for rehabilitation								
CO5:	Design the wearable robots								

HoD / BOS Chairman

144

Refe	erences:
1.	Nagrath and Mittal, "Robotics and Control", Tata McGraw Hill, First edition, 2003
2.	Spong and Vidhyasagar, "Robot Dynamics and Control", John Wiley and Sons, First edition, 2008
3.	Fu.K.S, Gonzalez. R.C., Lee, C.S.G, "Robotics, control", sensing, Vision and Intelligence, Tata McGraw Hill International, First edition, 2008
4.	Bruno Siciliano, Oussama Khatib, Springer Handbook of Robotics, 1st Edition, Springer, 2008
5.	Shane (S.Q.) Xie, Advanced Robotics for Medical Rehabilitation - Current State of the Art and Recent Advances, Springer, 2016
6.	Sashi S Kommu, Rehabilitation Robotics, I-Tech Education and Publishing, 2007
7.	Jose L. Pons, Wearable Robots: Biomechatronic Exoskeletons, John Wiley & Sons Ltd, England, 2008
8.	Howie Choset, Kevin Lynch, Seth Hutchinson, "Principles of Robot Motion: Theory, Algorithms, and Implementations", Prentice Hall of India, First edition, 2005
9.	Philippe Coiffet, Michel Chirouze, "An Introduction to Robot Technology", Tata McGraw Hill, First Edition, 1983
10.	Jacob Rosen, Blake Hannaford & Richard M Satava, "Surgical Robotics: System Applications & Visions", Springer 2011
11.	Jocelyn Troccaz, Medical Robotics, Wiley, 2012
12.	Achim Schweikard, Floris Ernst, Medical Robotics, Springer, 2015

		(CO-PO Mappin	ıg		
PO / CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1:	-	-	<u>-</u>	111	-	-
CO2:	-	-	-	2	-	-
CO3:	2	-	2	2	2	2
CO4:	2	-	2	2	3	2
CO5:	2	-	2	2	3	3
Average:	2	_	2	1.8	2.6	2.3

Subject Code	Subject Name	Category	L	T	P	C	
VE24001	OEC	3	0	0	3		
Course Objective:							
To learn abo	ut the process involved in the design and developm	ent of real-time er	nbedo	led sy	stem		
To develop t	he embedded C programming skills on 8-bit microc	ontroller					
To study abo	out the interfacing mechanism of peripheral devices	with 8-bit microc	ontro	lers			
To learn abo	ut the tools, firmware related to microcontroller pro	gramming					
To build a home automation system							

UNIT – I	INTRODUCTION TO EMBEDDED C PROGRAMMING	9
	d Program Structure - C Types, Operators and Expressions - C Control Flow - C	
	Program Structures - C Pointers And Arrays - FIFO and LIFO - C Structures -	
Development T		
UNIT – II	AVR MICROCONTROLLER	9
ATMEGA 16	Architecture - Nonvolatile and Data Memories - Port System - Peripheral Features:	
	ning Subsystem, Pulse Width Modulation, USART, SPI, Two Wire Serial Interface,	
	s - Physical and Operating Parameters	
UNIT – III	HARDWARE AND SOFTWARE INTERFACING WITH 8-BIT SERIES	9
	CONTROLLERS	
Lights and Swi	tches - Stack Operation - Implementing Combinational Logic - Expanding I/O -	
Interfacing An	alog To Digital Convertors - Interfacing Digital To Analog Convertors - LED Displays:	
Seven Segmen	t Displays, Dot Matrix Displays - LCD Displays - Driving Relays - Stepper Motor Interfa	ace -
Serial EEPRO	M - Real Time Clock - Accessing Constants Table - Arbitrary Waveform Generation -	
Communicatio	n Links - System Development Tools	
UNIT – IV	VISION SYSTEM	9
Fundamentals	of Image Processing - Filtering - Morphological Operations - Feature Detection and Mato	ching
	Sharpening - Segmentation - Thresholding - Contours - Advanced Contour Property	ies -
Gradient - Can	ny Edge Detector - Object Detection - Background Subtraction	
UNIT – V	HOME AUTOMATION	9
Home Automa	tion - Requirements - Water Level Notifier - Electric Guard Dog - Tweeting Bird	
Feeder - Packa	ge Delivery Detector - Web Enabled Light Switch - Curtain Automation - Android Door	
Lock - Voice (Controlled Home Automation - Smart Lighting - Smart Mailbox - Electricity Usage Moni	tor -
	age Door Opener - Vision Based Authentic Entry System	
	Total Contact Hours	: 45

	Upon completion of the course students should be able to:			
CO1:	analyze the 8-bit series microcontroller architecture, features and pin details			
CO2:	CO2: write embedded C programs for embedded system application			
	design and develop real time systems using AVR microcontrollers			
CO4:	design and develop the systems based on vision mechanism			
CO5:	design and develop a real time home automation system			

Refe	erences:
1.	Dhananjay V. Gadre, "Programming and Customizing the AVR Microcontroller", McGraw Hill, 2001.
2.	Joe Pardue, "C Programming for Microcontrollers", Smiley Micros, 2005.
3.	Steven F. Barrett, Daniel J. Pack, "ATMEL AVR Microcontroller Primer: Programming and
	Interfacing", Morgan & Claypool Publishers, 2012
4.	Mike Riley, "Programming Your Home - Automate With Arduino, Android and Your
	Computer", the Pragmatic Programmers, Llc, 2012.
5.	Richard Szeliski, "Computer Vision: Algorithms and Applications", Springer, 2011.
6.	Kevin P. Murphy, "Machine Learning - a Probabilistic Perspective", the MIT Press
	Cambridge, Massachusetts, London, 2012.

	CO-PO Mapping								
PO / CO	PO1	PO2	PO3	PO4	PO5	PO6			
CO1:	1		1	1	1				
CO2:	1	3	1	1	1	3			
CO3:	1	3	1	1	1	3			
CO4:	1	3	1	1	1	3			
CO5:	1	3	1	1	1	3			
Average:	1	3	1	1	1	3			

Subject Co	de	Subject Name	Category	L	T	P	C
CX2400	1	ENVIRONMENTAL SUSTAINABILITY	OEC	3	0	0	3
UNIT – I	IN	TRODUCTION					9
Valuing the En	viro	nment: Concepts, Valuing the Environment: Methods, 1	Property Right	s,			
Externalities, a	nd E	Environmental Problems					
UNIT – II CONCEPT OF SUSTAINABILITY 9							9
Sustainable De	velo	pment: Defining the Concept, the Population Problem,	Natural Resou	rce			
Economics: An	Ov	rerview, Energy, Water, Agriculture					
UNIT – III	SI	GNIFICANCE OF BIODIVERSITY					9
Biodiversity, F	ores	t Habitat, Commercially Valuable Species, Stationary -	Source Local	Air			
Pollution, Acid	Rai	in and Atmospheric Modification, Transportation					
UNIT – IV POLLUTION IMPACTS 9							
Water Pollution	ı, So	olid Waste and Recycling, Toxic Substances and Hazard	dous Wastes, C	iloba	1		
Warming.							

UNIT – V	ENVIRONMENTAL ECONOMICS	9
Development, I	Poverty, and the Environment, Visions of the Future, Environmental economics and polic	y
by Tom Tietenl	perg, Environmental Economics	
	Total Contact Hours	: 45

	Upon completion of the course students should be able to:				
CO1:	Describe methods to value the environment and explain related economic concepts like				
	externalities and property rights.				
CO2:	nalyze sustainability issues with respect to population, energy, water, and agriculture.				
CO3:	Assess the significance of biodiversity and the environmental impacts of air pollution				
	and habitat loss.				
CO4:	Evaluate pollution types and their environmental consequences including waste				
	management and global warming.				
CO5:	Discuss environmental economic policies and their role in addressing poverty and				
	promoting sustainable development.				

Refe	rences:
1.	Andrew Hoffman, Competitive Environmental Strategy - A Guide for the Changing Business
	Landscape, Island Press.
2.	Stephen Doven, Environment and Sustainability Policy: Creation, Implementation,
	Evaluation, the Federation Press, 2005
3.	Robert Brinkmann., Introduction to Sustainability, Wiley-Blackwell., 2016
4.	Niko Roorda., Fundamentals of Sustainable Development, 3rd Edn, Routledge, 2020
5.	Bhavik R Bakshi., Sustainable Engineering: Principles and Practice, Cambridge University Press,
	2019

	CO-PO Mapping								
PO / CO	PO1	PO2	PO3	PO4	PO5	PO6			
CO1:	3	2	2	1	2	3			
CO2:	3	3	2	2	3	3			
CO3:	2	2	2	2	3	3			
CO4:	2	3	2	2	2	3			
CO5:	3	2	3	2	3	3			
Average:	2.6	2.4	2.2	1.8	2.6	3			

Subject Code	Subject Name	Category	L	Т	P	C
NT24001	NANOCOMPOSITE MATERIALS	OEC	3	0	0	3
Course Objective:		-1				

- To provide foundational knowledge on the structure, properties, and processing of nanocomposites.
- To explore metal-based nanocomposites, their synthesis techniques, and functional properties.
- To understand the design, characterization, and applications of polymer-based nanocomposites.
- To introduce natural and synthetic biomaterial-based nanocomposites and their biomedical applications.
- To familiarize students with technological applications of nanocomposites in textiles, cosmetics, and food industries.

UNIT - I BASICS OF NANOCOMPOSITES

9

Nomenclature, Properties, features and processing of nanocomposites. Sample Preparation and Characterization of Structure and Physical properties. Designing, stability and mechanical properties and applications of super hard nanocomposites.

METAL BASED NANOCOMPOSITES UNIT - II

Metal-metal nanocomposites, some simple preparation techniques and their properties. Metal - Oxide or Metal-Ceramic composites, Different aspects of their preparation techniques and their final properties and functionality. Fractal based glass-metal nanocomposites, its designing and fractal dimension analysis. Core-Shell structured nanocomposites

UNIT - III POLYMER BASED NANOCOMPOSITES

9

Preparation and characterization of diblock Copolymer based nanocomposites; Polymer Carbon nanotubes based composites, their mechanical properties, and industrial possibilities.

NANOCOMPOSITE FROM BIOMATERIALS UNIT - IV

9

Natural nanocomposite systems - spider silk, bones, shells; organic-inorganic nanocomposite formation through self-assembly. Biomimetic synthesis of nanocomposites material; Use of synthetic nanocomposites for bone, teeth replacement.

NANOCOMPOSITE TECHNOLOGY

9

Nanocomposite membrane structures- Preparation and applications. Nanotechnology in Textiles and Cosmetics-Nano-fillers embedded polypropylene fibers - Soil repellence, Lotus effect - Nano finishing in textiles (UV resistant, anti-bacterial, hydrophilic, self-cleaning, flame retardant finishes), Sun-screen dispersions for UV protection using titanium oxide - Colour cosmetics. Nanotechnology in Food Technology - Nanopackaging for enhanced shelf life - Smart/Intelligent packaging.

Total Contact Hours: 45

Course Outcomes:	Upon completion of the course students should be able to:
CO1:	Explain the basic concepts, processing methods, and mechanical behavior of nanocomposites.
CO2:	Describe preparation techniques and analyze the properties of various metal-based
	nanocomposites.
CO3:	Evaluate the synthesis and mechanical performance of polymer-based nanocomposites
	for industrial use.
CO4:	Analyze the role of biomaterials in forming nanocomposites and their application in
311	biomedicine.

HoD / BOS Chairman

CO5: Assess the use of nanocomposites in consumer technologies such as textiles, cosmetics, and food packaging.

Refe	rences:
1.	Introduction to Nanocomposite Materials. Properties, Processing, CharacterizationThomas E.
	Twardowski. 2007. DEStech Publications. USA.
2.	Nanocomposites Science and Technology - P. M. Ajayan, L.S. Schadler, P. V.Braun 2006.
3.	Physical Properties of Carbon Nanotubes- R. Saito 1998.
4.	Carbon Nanotubes (Carbon , Vol 33) - M. Endo, S. Iijima, M.S. Dresselhaus 1997.
5.	The search for novel, superhard materials- Stan Vepriek (Review Article) JVST A, 1999
6.	Nanometer versus micrometer-sized particles-Christian Brosseau, Jamal BeN Youssef,
	Philippe Talbot, Anne-Marie Konn, (Review Article) J. Appl. Phys, Vol 93, 2003
7.	Diblock Copolymer, - Aviram (Review Article), Nature, 2002
8.	Bikramjit Basu, Kantesh Balani Advanced Structural Ceramics, A John Wiley & Sons, Inc.,
9.	P. Brown and K. Stevens, Nanofibers and Nanotechnology in Textiles, Woodhead
	publication, London, 2006

CO-PO Mapping							
PO / CO	PO1	PO2	PO3	PO4	PO5	PO6	
CO1:	3	2	2	2	2	2	
CO2:	3	3	2	2	3	2	
CO3:	3	3	3	2	3	2	
CO4:	2	3	2	2	2	2	
CO5:	3	3	3	2	3	3	
Average:	2.8	2.8	2.4	2	2.6	2.2	

HoD / BOS Chairman

Subject Code	Subject Name	Category	L	Т	P	C
BY24001	IPR, BIOSAFETY AND ENTREPRENEURSHIP	OEC	3	0	0	3

Course Objectives:

- To introduce the fundamentals of Intellectual Property Rights (IPR) and its significance in research and development.
- To familiarize students with various international treaties, patent filing processes, and legal implications of patents.
- To impart knowledge on biosafety principles, containment levels, and national/international biosafety guidelines.
- To understand related international protocols.
- To develop entrepreneurial skills and explore opportunities in biotechnology and small-scale enterprises.

UNIT – I IPR

Q

Intellectual property rights – Origin of the patent regime – Early patents act & Indian pharmaceutical industry – Types of patents – Patent Requirements – Application preparation filing and prosecution – Patentable subject matter – Industrial design, Protection of GMO's IP as a factor in R&D,IP's of relevance to biotechnology and few case studies.

UNIT – II AGREEMENTS, TREATIES AND PATENT FILING PROCEDURES

0

History of GATT Agreement - Madrid Agreement - Hague Agreement - WIPO Treaties - Budapest Treaty

PCT – Ordinary – PCT – Conventional – Divisional and Patent of Addition – pecifications – Provisional and complete – Forms and fees Invention in context of "prior art" – Patent databases – Searching International Databases – Country-wise patent searches (USPTO,espacenet(EPO) – PATENT Scope (WIPO) – IPO, etc National & PCT filing procedure – Time frame and cost – Status of the patent applications filed – Precautions while patenting – disclosure/non-disclosure – Financial assistance for patenting – Introduction to existing schemes Patent licensing and agreement Patent infringement – Meaning, scope, litigation, case studies

UNIT – III BIOSAFETY

9

Introduction – Historical Backround – Introduction to Biological Safety Cabinets – Primary Containment for

Biohazards - Biosafety Levels - Biosafety Levels of Specific Microorganisms - Recommended Biosafety

Levels for Infectious Agents and Infected Animals - Biosafety guidelines - Government of India.

UNIT – IV GENETICALLY MODIFIED ORGANISMS

9

Definition of GMOs & LMOs – Roles of Institutional Biosafety Committee – RCGM – GEAC etc. for GMO applications in food and agriculture – Environmental release of GMOs – Risk Analysis – Risk Assessment – Risk management and communication – Overview of National Regulations and relevant International Agreements including Cartegana Protocol.

UNIT – V ENTREPRENEURSHIP DEVELOPMENT

9

Introduction - Entrepreneurship Concept - Entrepreneurship as a career - Entrepreneurial personality

Characteristics of successful Entrepreneur – Factors affecting entrepreneurial growth – Entrepreneurial Motivation – Competencies – Mobility – Entrepreneurship Development Programmes (EDP) - Launching Of Small Enterprise - Definition, Characteristics – Relationship between small and large units – Opportunities for

HoD / BOS Chairman

an Entrepreneurial career – Role of small enterprise in economic development – Problems of small scale industries – Institutional finance to entrepreneurs - Institutional support to entrepreneurs.

Total Contact Hours: 45

Course Outcomes:	Upon completion of the course students should be able to:
CO1:	Understand the scope, types, and procedures involved in Intellectual Property Rights (IPR) and patents.
CO2:	Analyze global treaties and agreements related to patent protection and apply patent filing procedures.
CO3:	Apply biosafety guidelines to laboratory practices and interpret safety levels for various biohazards.
CO4:	Evaluate biosafety regulations and risk management strategies associated with GMOs and LMOs.
CO5:	Demonstrate entrepreneurial knowledge by identifying opportunities and challenges in establishing small enterprises.

Textbooks:

- 1. Bouchoux, D.E., "Intellectual Property: The Law of Trademarks, Copyrights, Patents, and Trade Secrets for the Paralegal", 3rd Edition, Delmar Cengage Learning, 2008.
- 2. Fleming, D.O. and Hunt, D.L., "Biological Safety: Principles and Practices", 4th Edition, American Society for Microbiology, 2006.

Reference Books/Other Materials/Web Resources:

- 1. Irish, V., "Intellectual Property Rights for Engineers", 2nd Edition, The Institution of Engineering and Technology, 2005.
- 2. Mueller, M.J., "Patent Law", 3rd Edition, Wolters Kluwer Law & Business, 2009.
- 3. Young, T., "Genetically Modified Organisms and Biosafety: A Background Paper for Decision-Makers and Others to Assist in Consideration of GMO Issues" 1st Edition, World Conservation Union, 2004.
- 4. S.S Khanka, "Entrepreneurial Development", S.Chand & Company LTD, New Delhi, 2007

CO-PO								
PO / CO	PO1	PO2	PO3	PO4	PO5	PO6		
CO1:	3	2	2	2	2	2		
CO2:	3	3	3	2	3	2		
CO3:	3	2	2	2	2	2.		
CO4:	2	2	3	2	2	3		
CO5:	2	3	3	2	3	3		
Average:	2.6	2.4	2.6	2	2.4	2.4		

HoD / ROS Chairman

*- 4 - 27/